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Abstract

Selecting new drug candidates such as antibodies is a challenging task. In today’s drug
design tool chain generative diffusion models are employed. However, these models require
large datasets to train on. In antibody design this is a problem as the amount of publicly
available data is limited. To counter this issue, we propose the use of a negative guidance
technique to improve sample quality without increasing dataset size.

Recently a new technique for image diffusion has been proposed that aims to get samples
closer to the original ground truth data distribution called SIMS. An auxiliary model is trained
on synthetic data from a base model trained on the original dataset. At inference time guidance
is done between both. The reasoning behind this is that the bias between base and auxiliary
has traits of the bias between base and the ground truth. This is used to shift base closer to
the ground truth. They show state of the art FID scores on imagenet. Our hypothesis is that
by employing this technique on antibody-antigen diffusion similar improvements can be seen.

The proposed integration of SIMS has been applied to Diffab, an accessible and trainable
antibody-antigen diffusion model. When a CDR-region is masked out on an antigen-antibody
complex, Diffab is able to generate a new CDR-region that fits the rest of the antibody and
the antigen. To verify the technique a base model was trained from SabDab using the Diffab
framework. Next an auxiliary model initialized with weights from base was trained with syn-
thetic data from base. To achieve reasonable training times a two step training approach was
employed. Finally at inference time guidance is done on the predicted noise ¢ by using both

models: €gyided = (1 + W)€pase — Weaues Where w controls the guidance strength.
On a held out test set of 350 antibody-antigen complexes, the use of SIMS on the (z,y,z)
positions has been shown to improve the RMSD of the generated CDRH3 regions by ~ 8%

compared to the base model.
1 Introduction

Antibodies are natural occurring proteins that will
identify foreign actors within the body, such as viruses.
In immunology, the target that antibodies recognize is
called an antigen. An antigen can be the whole foreign
element, or just a part of it, such as the spike protein
in COVID-19. The antibody will bind to the antigen,
forming an antibody-antigen complex.

A new promising technique in the drug design
pipeline is in silico generative antibody design.
Whereby, we use generative (AI) techniques to create
suitable antibodies for a particular target.

Diffusion models are a class of generative models
that have gained popularity for their ability to gen-
erate high-quality samples from complex distributions.
They work by modeling the process of diffusion, where
data points are gradually transformed into noise and
then reconstructed back into data.

The most well know form of diffusion is image dif-
fusion. Here during training the model will learn to
denoise an image that has been corrupted with gaus-

sian noise.

Recently it has been discovered that just like for cre-
ating new images from noise, diffusion models can be
employed to create novel antibodies. Just like in the
case of image diffusion they will during their training
learn to reconstruct a corrupted random representation
of an antibody. Then during inference novel antibodies
can be generated from this noisy state.

1.1 Background

Antibody structure An antibody has a heavy and
light polypeptide chain. Each chain has three comple-
mentary determining regions. Called CDR1, CDR2,
CDR3. When referring to region 3 of the heavy chain
we refer to CDRH3. The regions are highly variable
loops and determine the binding specificity of the an-
tibody. The rest of the antibody is more conserved.
The CDRHS3 region is the most variable. When talk-
ing about the backbone it refers to the N, C and CA
atoms of each residue. The side chains are the rest of
the atoms in the amino acid, and determine the amino



acid type and it’s properties. [1]

Diffusion models Diffusion models [[2], [3], [4]] are
characterized by a forward and backward process. The
forward process will gradually add noise until the data
is a multi variate Gaussian distribution. The backward
process will learn to approximate the ground truth de-
noiser that will reconstruct the data from noise. Cru-
cially in this work is the denoising step of the backward
process. This is done by predicting the noise € that was
added to the data. The learned denoiser looks like:
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where Yg(zy,t) is the variance predicted by the model
at step t. For the covariance a time dependent profile
is used so that this does not need to be learned.

o (2+,t) can be learned directly or we can learn the
amount of noise that was added to x;. This is done
trough €p (x4, t)

Given the noisier sample x; and the predicted noise
€g(x, t) the next step can be computed:
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with oy = 1 — 8; A higher a; means more signal is
preserved (less noise added). This is because it has an
inverse relationship to 8 which is the variance of the
noise added at that time step. When the variance is
low you retain more of the previous step in the for-
ward process (when set to zero for example you copy
over the step), when it is high you add more noise. z
is a point sampled from the prior distribution (typi-
cally a gaussian) o controls the amount of noise to add
to the backward process, this is needed because each
diffusion step is a stochastic process. In each forward
diffusion step you sample from a conditional gaussian
distribution, not only at 7! If o, would be zero then
each step would be deterministic and we would lose
sample diversity.

In this work the epsilon formulation will be used.
The function to predict the added noise will be called
EpsilonNet throughout this work. It will play a cru-
cial role in applying the SIMS technique.
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2 Foundations

2.1 Diffab

Diffab is a diffusion model that can generate new
CDR-regions on an antibody-antigen complex. The
model is trained on the SabDab dataset. During train-
ing one of the CDR-regions is masked out and the
model has to reconstruct it. Diffab is from the paper
” Antigen-Specific Antibody Design and Optimization
with Diffusion-Based Generative Models” by Luo et.
al [5].

Classically when diffusion is done for antibody de-
sign, the diffusion happens on the backbone represen-
tation of the antibody. After the backbone is generated
an inverse folding model (such as proteinMPNN [6]) is
used to get the full amino acid sequence. Finally the
side chains are added using a tool such as PyRosetta
17

Diffab is different in that it does joint optimization of
the structure and the sequence. The model will predict
for each residue the (x,y, z) position, rotation and the
amino acid type. The model is equivariant to rotations
and translations of the input structure.

The following representation is used during diffusion:

e Position:
pER3
Prior after T steps: N(0, 07.13).

¢ Rotation:
R € S0O(3)
Prior after T steps: Unif(SO(3)).

e Sequence:
S; ‘ T~ Cat(E; 7T7;), S; € by
Prior after T steps: Cat(Z; +1).

This structure is represented in figure
Diffusion happens in the following way:

1. For step t: The position, rotation, sequence, con-
text and time step are passed to the EpsilonNet.
The "noise” is predicted for each of the three parts.

2. Each component is denoised using it’s own de-
noiser. Adapted to the data representation. step
t — 1 is obtained.

3. This repeats for T steps until a clean sample is
obtained.

The epsilon of diffab has three different heads (the
last part of the neural network):

e Position head: This head is responsible for pre-
dicting the noise added to each position. It thus
predicts € like standard diffusion.

e Orientation head: This head predicts the next
orientation that has to be applied.

e Amino acid head: This head predicts a categor-
ical distribution over the amino acid types for each
residue. The distribution represents the prior be-
lief of the original distribution. It is a categorical
distribution.

Figure [3| available in the appendix illustrates the de-
noising process for one diffusion step.
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Figure 1: Antibody-Antigen representation for diffusion in Diffab.

2.2 SIMS

In the paper ”Self-improving diffusion models with syn-
thetic data” by Alemohammad et al. the au-
thors propose a new training paradigm for diffusion
models that leverages self-synthesized data to improve
the model’s performance. The key idea is to use the
model’s own generated samples as a form of negative
guidance during training, steering the model away from
non-ideal synthetic data and towards the real data dis-
tribution.

The method involves training two models: a base
model and an auxiliary model. The base model is
trained on the original dataset, while the auxiliary
model is trained on synthetic data generated by the
base model. During inference, the predictions from
both models are combined to guide the sampling pro-
cess. The combined prediction is given by:

3)

€guided = (1 + W)ﬁbase — Weauzx

The idea is that the bias between the base and aux-
iliary model has traits of the bias between the base
and the ground truth. By subtracting the auxiliary
model’s prediction, the base model is nudged closer to
the real data distribution. The parameter w controls
the strength of this guidance. Figure[dand [f]illustrates
the SIMS idea, they can be found in the appendix.

3 Methodology

3.1 Training the auxiliary model

A naive way to train an auxiliary model is to gener-
ate with the base model a new sample and pass it to
the auxiliary model to train. You could either gener-
ate a new sample each time or form a dataset at the
same time and reuse. The first approach makes train-
ing slow. The second although faster isn’t ideal either
since two models need to be loaded and there is still
overhead.

Therefore, to train the auxiliary model a two step
approach was used:

1. First the base model is used to generate synthetic
samples. These are saved in a data base. In
stead of saving the processed PDB files, the di-
rect tensor representation used by the model is
saved. This eliminates the need to reprocess the
data each time. It also avoids processing artifacts.
This saves processing time when training the aux-
iliary model and also makes sure that data is not
organized differently by processing artifacts. The
data is saved in LMDB [9]. LMDB is a key-value
database that uses memory mapping to store data
on disk. This makes it very fast to read data dur-
ing training.

e Note internally the model operates on back-
bone representation (position, rotation and



sequence). When a sampling step is done
during training diffab expects the full struc-
ture (including sidechains, masks, etc) as in-
put. However after sampling the model only
returns the backbone, afterwich it is refor-
matted to the full structure. Therefore an
adapted sampling procedure was created that
outputs the correct tensor representation for
input into the model. This way the output of
one model (the baseline) can be used directly
as input for the auxiliary model.

2. Next the auxiliary model is trained on the syn-
thetic data. A special dataloader is used that will
read the data from the LMDB database and re-
construct the tensor representation used by the
model.

This approach is outlined in figure [6] which is avail-
able in the appendix.

3.2 Guidance on position

To evaluate the effectiveness of SIMS, the technique
was applied on the position of each residue. This was
chosen since the diffusion process on the position is sim-
ilar too the diffusion process on images. The position
is represented as a («, y, z) coordinate in 3D space. Ap-
plying guidance on the predicted noise for the position
is a euclidian operation.

Within the diffab implementation the EpsilonNet
predicts both position, rotation and amino acid type.
During inference two epsilon nets are used, one for the
base model and one for the auxiliary model. The guid-
ance is only applied on the position part of the pre-
diction. One drawback is that two models need to be
loaded into memory. Before the position is denoised
guidance is done on the predicted noise as shown in

figure

4 Extensions

Aside from simply applying guidance on the position,
other types of guidance can be applied. The following
extensions were considered:

Guidance on sequence The sequence is repre-
sented as a categorical distribution over the 20 amino
acids. The EpsilonNet predicts for each residue a cat-
egorical distribution over the amino acids. This rep-
resents the prior belief of the original distribution. To
apply guidance on this distribution we can use the fol-
lowing approach:

The last layer of the sequence head is a softmax layer.
This means that the output is a probability distribu-
tion over the amino acids. To apply guidance this layer
is removed next the logits are obtained. These logits
are mixed using the SIMS formula. Next a softmax

is applied again to obtain a valid probability distribu-
tion. Finally the denoising step is applied using this
new distribution.

Guidance on rotation Applying guidance on ro-
tation is not as straightforward as on position. The
rotation is represented as a rotation matrix in SO(3).
This means that the rotation is not a euclidian space.
Therefore the guidance can not be applied directly on
the prediction from the epsilon which predicts the next
rotation that has to be applied. This way of applying
has not been solved yet, however a possible solution
could be:

e Conceptually we want to interpolate between two
rotations. This can be done using lie algebra in
tangent space. In this space we can apply guidance
as a euclidean operation. Important to note is that
the current rotation is applied on the sequence of
rotations before it, therefore the predicted rota-
tions need to be anchored at the current rotation.

Combined guidance Multiple types of guidance
can be combined to improve the overall performance.
In the hope that combining guidance on position, rota-
tion and sequence will yield better results than just one
type of guidance. To have reliable combined guidance
it is important that each type of guidance has its own
tuned guidance strength w. This is because the dif-
ferent types of data have different characteristics and
scales. For example the position is a continuous vari-
able in 3D space, while the sequence is a categorical
variable. Therefore the impact of guidance on each
type of data will be different.

Guidance schedule A guidance schedule can be
used. This means that the guidance strength w can
be changed during the diffusion process for each type
of guidance. For example: at the start no guidance
can be applied to let the model 'warm up’. Next po-
sitional guidance can be increased in a linear way and
kept steady for a few steps. Next rotational guidance
can be turned on, and finally sequence guidance can
be applied. The rationale is that the in this way the
different types wont interfere. At the end you can also
turn off guidance to let the model 'polish’ the sample.

5 Metrics

Three metrics are used to evaluate the performance
of the model: Root Mean Square Deviation (RMSD),
which captures the difference between the generated
and ground truth structure. Amino Acid Recovery
(AAR), which measures the percentage of correctly
predicted amino acids in the CDRH3 region. Finally,
Perplexity Pseudo Log Likelihood (PPPL) is used to
evaluate the biological plausibility of the generated se-
quences.
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6 Results

Table [1] highlights the results of applying SIMS to Dif-
fab. The results are obtained on a held out test set
of 246 antibody-antigen complexes from SabDab. The
RMSD is calculated on the generated CDRH3 region.
For completeness an ablation study on the guidance
strength w is shown in table provided in the ap-
pendix. Additionally study on sequence is shown in
table |3} They are provided as supplementary material
in the appendix, for more details see accompanying
thesis.

Baseline is the base model trained from scratch us-
ing the newly discussed split and only on the CDRH3
region. Balanced sampling exp 0.75 is the same
model but trained with a more balanced sampling
strategy (using the word2vec style sampling). SIMS
pos 0.75 is the base model with SIMS applied to posi-
tion only, with a guidance strength of 0.75. SIMS pos
0.75 (with decay) is the same but using a decay. The
decay is a linear decay starting from the initial guid-
ance strength towards zero. The schedule is: no guid-
ance for 10 steps then gradually increase guidance for
position over 5 steps keep on for 40 steps. Then keep
off.

The best results are obtained when using a guidance
strength of 0.75 and without using decay or a schedule.
The 0.75 is obtained via an ablation study which can
be found in the accompanying thesis along with more
results on guidance on sequence and using different se-
tups. This results in a ~ 8% improvement over the
baseline.

Most signal in the results can be obtained by looking
at the RMSD since here guidance is only applied on the
position which affects the structure. RMSD is better
for all our implemented methods (lower is better).

Some small deviations in AAR are visible too this
is because a joint epsilon net is used with three dif-
ferent heads so the a change in structure also affects

the output of the sequence head of the epsilon net.
The AAR for our methods (compared to baseline) is
slightly higher (higher is better). Consequently the
PPPL is also affected. For the guidance methods it’s
slightly lower (better).

7 Conclusion and future work

7.1 Future work

e Guidance mask in stead of equal guidance

— In stead of applying equal guidance on each
residue, a mask could be used to apply more
guidance on residues that are further away
from the ground truth. This mask could be
learned.

e Classifier free guidance |10] using a learned guid-
ance mask

— Ommit using an auxiliary model. Instead
train the base model with conditional infor-
mation and with a mask that indicates which
residues to apply more guidance on.

— This can also be extended to learning the
guidance mask trough reinforcement learning
processes.

7.2 Conclusion

In this work the SIMS technique was applied to Dif-
fab. The auxiliary model was trained using a two
step approach to save training time. Guidance was ap-
plied on the position of each residue during inference.
This resulted in a ~ 8% improvement in RMSD on the
CDRHS3 region on a held out test set of 350 antibody-
antigen complexes from SabDab. Successfully demon-
strating the potential of guidance techniques to im-
prove generative antibody design.



Table 1: Results of applying SIMS to Diffab on a held out test set of 350 antibody-antigen complexes from
SabDab. The RMSD is calculated on the generated CDRH3 region. The best results are obtained when using
a guidance strength of 0.75 and without using decay or a schedule. This results in a ~ 8% improvement over
the baseline. For each complex 8 samples were generated, the mean is computed over all samples, the std is the
standard deviation and [min, max] is the range of values over all samples within the test set. Lower is better
for rmsd and pll_perplexity, higher is better for aar.

rmsd aar pll_perplexity
experiment_id mean + std  [min, max] mean + std [min, max] mean + std  [min, max]
baseline 413 £ 371 [0.60, 62.51] 0.27 £0.14 [0.00,0.88] 9.20 + 3.33  [2.66, 28.49]

balanced sampling 5 g | 5 48 057, 17.83] 028 +0.13  [0.00, 0.88] 1047 + 3.75 [2.18, 32.82)

exp 0.75

sims pos 0.75 (with

docay) 3.81 £ 280 [0.57,53.64] 0.28 +0.14 [0.00, 0.88] 9.04 +3.25 [2.86, 31.12]
sims pos 0.75 (With ) 0= 4 340 058, 59.77] 028 + 0.14  [0.00, 0.88] 9.10 & 3.27  [2.86, 31.12]
schedule)

sims pos 0.75 403 +3.66 [0.58, 78.62] 0.28 +0.14 [0.00,0.88] 9.06 + 3.25  [2.64, 30.54]
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C Training of the auxiliary model
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Figure 6: Training the auxiliary model using a two step approach.



D Ablation studies

Table 2: Results of ablation study on guidance strength w. The results are obtained on a held out test set of 37
antibody-antigen complexes from SabDab. The RMSD is calculated on the generated CDRH3 region. The best
results overall (taking in to account min/max) are obtained when using a guidance strength of 0.75. For each
complex 8 samples were generated, the mean is computed over all samples, the std is the standard deviation
and [min, max] is the range of values over all samples within the test set. Lower is better for rmsd.

rmsd

mean + std  [min, max]
baseline 3.62 + 3.18 [0.70, 40.12]
from base pos guidance 0.75 3.29 + 2.03 [0.62, 12.78]
from base pos guidance 1.0 3.30 £ 2.03 [0.62, 13.43]
from base pos guidance 1.5 3.42 +£2.23 [0.55, 16.05]
from scratch pos guidance 0.5 3.34 £2.16 [0.67, 12.79]
from scratch pos guidance 0.75  3.35 £ 2.17  [0.74, 13.26]
from scratch pos guidance 1.0 3.45 £ 229 [0.81, 14.11]
from scratch pos guidance 1.5 3.73 +£2.73 [0.76, 15.72]
from base pos guidance 0.5 3.34 +2.14 [0.66, 12.58]

Table 3: Results of ablation study on guidance on sequence. The results are obtained on a held out test set
of 351 antibody-antigen complexes from SabDab. The RMSD is calculated on the generated CDRH3 region.
The best results overall (taking in to account min/max) are obtained when using a guidance strength of 1.0
on sequence only. For each complex 8 samples were generated, the mean is computed over all samples, the std
is the standard deviation and [min, max] is the range of values over all samples within the test set. Lower is
better for rmsd and pll_perplexity, higher is better for aar.

rmsd aar pll_perplexity

mean + std  [min, max] mean + std [min, max] mean £ std [min, max]
baseline 413 +£3.71 [0.60, 62.51] 0.27 +£0.14 [0.00, 0.88] 9.28 + 3.34  [2.66, 28.49)]
from scratch- guid-— 1 4 590 (0,50, 88.33] 031+ 0.14  [0.00, 0.88] 6.37 + 2.30 [1.43, 19.34]
ance on seq 1.0
from scratch guid- 4o 4 516 [0.57, 88.17] 030 + 0.14 [0.00, 0.88] T.19 + 2.62  [1.92, 26.95]

ance on seq 0.5
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