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Abstract

Selecting new drug candidates such as antibodies is a challenging task. In today’s drug
design tool chain generative diffusion models are employed. However, these models
require large datasets to train on. In antibody design this is a problem as the amount of
publicly available data is limited. To counter this issue, we propose the use of a negative
guidance technique to improve sample quality without increasing dataset size.

Recently a new technique for image diffusion has been proposed that aims to get
samples closer to the original ground truth data distribution called SIMS. An auxiliary
model is trained on synthetic data from a base model trained on the original dataset. At
inference time guidance is done between both. The reasoning behind this is that the bias
between base and auxiliary has traits of the bias between base and the ground truth. This
is used to shift base closer to the ground truth. They show state of the art FID scores
on imagenet. Our hypothesis is that by employing this technique on antibody-antigen
diffusion similar improvements can be seen.

The proposed integration of SIMS has been applied to Diffab, an accessible and train-
able antibody-antigen diffusion model. When a CDR-region is masked out on an antigen-
antibody complex, Diffab is able to generate a new CDR-region that fits the rest of the
antibody and the antigen. To verify the technique a base model was trained from SabDab
using the Diffab framework. Next an auxiliary model initialized with weights from base
was trained with synthetic data from base. To achieve reasonable training times a two
step training approach was employed. Finally at inference time guidance is done on the
predicted noise e by using both models: €gyiged = (1 + w)€pase — Weaue Where w controls
the guidance strength.

On a held out test set of 350 antibody-antigen complexes, the use of SIMS on the
(z,y, z) positions has been shown to improve the RMSD of the generated CDRHS regions
by ~ 8% compared to the base model.
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Chapter 1

Introduction

Figure 1.1: An antibody antigen complex. With the heavy and
light chain of the antibody translucent and the antigen filled.

1.1 Introduction

In traditional pre-clinical drug design, a significant portion of the time is used to discover
and test suitable drug candidates. One subset of drug candidates are antibodies. Anti-
bodies are natural occurring proteins that will identify foreign actors within the body, such
as viruses. In immunology, the target that antibodies recognize is called an antigen. An
antigen can be the whole foreign element, or just a part of it, such as the spike protein in
COVID-19. The antibody will bind to the antigen, forming an antibody-antigen complex.
Subsequently, the antibody will signal the immune system to deal with this abnormality.
Antibodies are produced by B-cells and can be present freely or locked to the surface of
the B-cell. There are specialized classes of antibodies that can signal the immune system
in different ways.

A new promising technique in the drug design pipeline is in silico generative antibody
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design. Whereby, we use generative (Al) techniques to create suitable antibodies for a
particular target. Traditionally many antibodies, by first generating candidates in silico we
can reduce the amount of time required to develop a drug.

1.2 Antibodies

Figure 1.2: An antibody. Source: NIH BioArt [25]

If we want to generate antibodies, a key aspect is understanding the basic structure of
such an antibody. The following section will delve into the intricate structure and function
of antibodies. It is largely based on the book Molecular Biology of the Cell by Alberts et
al. [2]

1.2.1 Proteins

An antibody is a type of protein. Proteins perform a vast array of functions within living or-
ganismes, including catalyzing metabolic reactions, replicating DNA, responding to stimuli,
and transporting molecules from one location to another.

A protein is a large molecule composed of one or more long chains of amino acids.

An amino acid is a molecule. In the most basic form it consists of a central carbon
atom (the carbon alpha) bonded to four different groups: an amino group (-NH2), a car-
boxyl group (-COOH), a hydrogen atom, and a distinctive side chain (R group) that varies
among different amino acids. The side chain determines a proteins function and the way it
interacts with other molecules. Amino acids also differ in charge, and can be hydrophobic
or hydrophilic.

There are 20 standard amino acids. When they connect to each other they form a
chain. This is called a protein or a polypeptide chain. The carboxyl group of one amino
acid will connect to the amino group of another, and so on. When talking about one amino
acid after it is incorporated into a chain it is called a residue (water is lost during linkage).
Residue and amino-acid will be used interchangeably in this work.
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Figure 1.3: A part of a polypeptide chain. lllustrating the different
components and the different angles between neighboring
residues. Source: edited GIF from Protopedia [14]

Crucially to remember when representing these amino acids are the shared atoms
across them. Namely the carbon alpha, the carboxyl carbon, and the nitrogen of the
amino group. These are called the backbone atoms. When you connect amino acids and
forget about the side chains for a moment, you can see that these backbone atoms line
up to form a chain. Together they form the backbone of the protein. When you connect
the side chain groups back to the backbone you get the full polypeptide again. In protein
modeling it is common to move between these representations. You can represent a
protein in a simplified way by just showing the backbone atoms and ignoring the side
chains. When you have the backbone there are algorithms such as PyRosetta [7] that
can compute the side chains again and assign them.

The sequence and arrangement of these amino acids in a protein dictate its three-
dimensional structure and, consequently, its function. This is because the sequence
determines how they will interact with each other some might for example show strong at-
traction to its neighbors causing the chain to fold in 3D. Since they have different charges
etc. When talking about the shape (and the function it carries with this shape in turn) of
the protein often it is referred to as the conformation. Moreover not only the amino acids
themselves will affect each other but also its environment. Factors such as pH, tempera-
ture... can all influence the conformation and stability of the protein. In this work the main
way proteins will be modeled is using their captured 3D structures. These structures are
most often captured using X-ray crystallography or cryo-electron tomography and stored
in databases such as the Protein Data Bank (PDB) [[4] , [6]]. Interestingly these are cap-
tured at a very cold temperature and often in a different environment than their source
environment. Thus although this work tries its best to computationally represent proteins
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as good as possible, modelling the true protein is still an open problem.

Due to the many combinatorial combinations of amino acids, the potential structures
and functions of proteins are vast. Theoretically say with a length of 100 amino acids,
there are 20’ possible combinations. Many of them will be infeasible yet it shows the
immense diversity of protein structures and thus their complexity.

Primary structure
amino acid sequence

Secondary structure
regular sub-structures

hemoglobin

P13 protein

Tertiary structure
three-dimensional structure

Quaternary structure
complex of protein molecules

Figure 1.4: The different levels of structure of a protein. Source:
Wikimedia Commons



CHAPTER 1. INTRODUCTION 5

A protein’s structure can be described at four levels:

Primary structure: the linear sequence of amino acids in the polypeptide chain.

Secondary structure: local folding patterns within the protein, such as alpha-helices
and beta-sheets, stabilized by hydrogen bonds.

Tertiary structure: the overall three-dimensional shape of a single polypeptide chain,
determined by interactions between side chains.

Quaternary structure: the arrangement of multiple polypeptide chains into a func-
tional protein complex.

— In fact an antibody can be build up of multiple of these chains and thus forms
a quaternary structure.

When modelling a polypeptide structure in 3D many different representations can be
used to model their structure some common ways:

All Atomic coordinates: specifying the 3D coordinates of each atom in the protein.

Only heavy atoms: leaving out the hydrogen atoms. But keeping the sidechain
atoms too.

The backbone representation: focusing on the main chain of the polypeptide, often
simplified to show only the C-alpha atoms.

Model each amino acid as single point (often the C alpha atom). Then assign a
rotation to each point. Since now it is an object made up of multiple atoms not just
single points in space.

— Model each backbone atom as a 3D point.

— Only model the 3D coordinates of the C-alpha atoms. Then assign a rotation
to each C-alpha atom to represent the orientation of the residue.

Using the C alpha position and dihedral angles: representing the protein’s confor-
mation through the positions of C alpha atoms and the angles between them. This
is illustrated in figure Two dihedral angles are visible the phi and psi angles.
The phi is between the C alpha and the Nitrogen, while the psi is between the C
alpha and the carboxyl Carbon. You can see between both images different confor-
mations.

There is also some distinction between global and local representations of protein
structures. You can:

View the protein as a whole and describe the position and pose in 3D space.
Focus on individual residues and either:

— Model their coordinates absolute in 3D space.
— Model their coordinates relative to the global position of the whole residue.
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* You can also model a residue within its global reference frame so in relation to all
other residues. Or to its local reference frame, so in relation to its own atoms.

This is important since when you turn and place the protein as whole somewhere
else it is still the same protein. But when you change the position and orientation of the
individual residues, the function is changed.

In this work the proteins will be represented in the different ways described above.
Depending on the task. Therefore it is important be familiar with the terms introduced
above.

1.2.2 Structure of Antibodies

antigen
structure recognized

e / by the antibody

paratope: antigen Fab
binding structure region

light chain

hinge region Fc region

heavy
chain

Figure 1.5: The antibody structure. Source: Wikimedia Commons
[16]

The general structure of an antibody is a Y shape. It is made up of two polypeptide
chains. A heavy chain and a light chain. The heavy chain is typically longer than the
light chain. There can be multiple heavy/light chains in an antibody, leading to different
classes of antibodies. There are many of them. One common one is the IgG antibody
(immunoglobulin G). Figure [1.5]represents this one, and it leads to the typical Y shape.

There are two heavy chains and two light chains. The chains are connected by disul-
fide bonds. The top part of the Y is called the Fab region, this is the part that binds to the
antigen. The bottom part is called the Fc region, this part will signal the immune system.
The Fc region is typically fairly constant among antibodies while the Fab region is more
variable. Specifically the part that interacts with the antigen is highly variable. That makes
sense since it needs to be adapted to the antigen. This part is called the paratope. The
part of the antigen that interacts with the paratope of the antibody is the epitope. When
the antigen and the antibody are bound together they form an antibody-antigen complex,
as shown in figure It can also be said that that the antibody is docked onto the
antigen.



CHAPTER 1. INTRODUCTION 7

HEAVY CHAIN
1

Figure 1.6: The CDR regions of an antibody (for the heavy chain).

The paratope is made up of three key regions. These are called the complementarity-
determining regions, as can bee seen in figure Often referred to as the CDRs.
Specifically CDR1, CDR2 and CDRS. They are around 7-20 residues in length. Both the
heavy chain and the light chain have such regions thus when referring to the regions of
the heavy chain they are called HCDR1, HCDR2 and HCDR3. And for the light chain
LCDR1, LCDR2 and LCDR3. They can also be referred to as CDRH1, CDRH2 and
CDRH3 for heavy chain and CDRL1, CDRL2 and CDRLS3 for light chain, in this work the
latter notation will be used. The CDRs are responsible for the specificity of the antibody-
antigen interaction. They vary a lot, and specifically the CDRHS3 is the most variable
region. They typically don’t form a alpha helix or beta sheets but more random shapes.
Therefore they are also called loops, and are adapted to the antigen shape.

1.2.3 Antibody refinement

The body has a huge repertoire of stored antibodies. In fact even if the immune system
has not seen an antigen before it should have an antibody that binds to it although with
low binding affinity. This huge repertoire is possible thanks to V(D)J recombination. When
B cells develop in the bone marrow, the DNA of the B-cells undergo this rearrangement.
This recombination divides the DNA sequence that encodes the antibody in 3 regions.
This process randomly combines variable (V), diversity (D), and joining (J) gene seg-
ments to create a unique variable region for each antibody. After this recombination the B
cell will express the antibody on its surface. What this recombination of different parts of
the genetic code of the antibody achieves is in fact a permutation of the CDR regions and
especially the CDRS region. Using a selection process, the immune system makes sure
that newly generated antibodies are stable. If they are not stable, they will die. Or if they
show self-reactivity, they will also be destroyed. After passing this test the antibodies are
made available for use.
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Figure 1.7: Antibodies expressed on the surface of a B cell.
Source: NIH BioArt [26]

The immune system uses affinity maturation to gradually improve antibodies over
time so that they fit the antigens better. Using somatic hypermutation, ie when the B cells
divide random mutations will be applied to the CDR regions. In this way new versions of
the antibody are created. Additionally, a selection process is used, antibodies that bind
better to antigens will survive longer, and ones that don’t bind well will survive less long.
Thus, the antibodies with the best mutation will survive and replicate. This process is
repeated. The best B cells (the ones with the best antibodies on their surface) will stop
mutating and become memory B cells. In this way, the body will be ready the next time
the antigen appears and have a better response.

1.3 Diffusion Models

1.3.1 A brief intro into diffusion models

Diffusion models are a class of generative models that have gained popularity for their
ability to generate high-quality samples from complex distributions. They work by model-
ing the process of diffusion, where data points are gradually transformed into noise and
then reconstructed back into data.

The most well know form of diffusion is image diffusion. Here during training the
model will learn to denoise an image that has been corrupted with gaussian noise. During
inference the model will start from pure noise and gradually denoise it to get a final image.
Figure illustrates this process.
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1 Corrupt an image with noise and learn to go TRAIN
back, do this for the whole dataset

2 Generate an image from noise (generate this noise) by denoising it step by step
the way you learned to denoise images within from your train dataset SAMPLE

Figure 1.8: The diffusion process.

1.3.2 For antibody design

Recently it has been discovered that just like for creating new images from noise, diffu-
sion models can be employed to create novel antibodies. Just like in the case of image
diffusion they will during their training learn to reconstruct a corrupted random represen-
tation of an antibody. Then during inference novel antibodies can be generated from this
noisy state. While this process is comparable to image diffusion the way these antibodies
are represented is different from image diffusion which models pixel values.

In the case of antibodies, typically the backbone representation introduced earlier will
be used. In some cases the antibody representation will be in complex with its antigen
and the antigen structure will also be visible to the model. When training a part of the
backbone will be scrambled and the model will learn to reconstruct this scrambled region.
It will keep in mind the antigen and the surrounding antibody context. Then when the
model is used a template antibody can be used that is docked to an antigen of interest.
The region that we want to generate will be scrambled and the model will generate this
region de novo.

The objective for this thesis is to optimize models for generative antibody design.
Therefore the focus will be on optimizing models to produce better CDRH3 regions. Since
they have the biggest impact, and it makes the problem well defined for the scope of this
work. With the goal that these findings can be used to further improve the other regions
in the future.



Chapter 2

Literature Review

The following chapter covers a brief review of the literature that was used during the
creation of this work. This review intends to highlight the papers that made a consider-
able impact in shaping this work. It does not intend to explain each technique in detalil.
However it does cover some fundamental concepts that are crucial for understanding the
context of this work.

2.1 Diffusion models

1 diffusion step

Forward Process

q(x,1x,) g, 1x,_) q0x,1x,_) qtx,,, |x) qx,,1x,,,) qCr,lx,)

ST T T T T T

X X X

0 t-1 t t+1 T
[ HCAPY B Py%_y 1) ¥ CAENY PyXpy 1%, Py 1%)

Backward Process

Figure 2.1: The diffusion process modeled as a markov chain.
The forward noising process indicated by the ¢ and the learned
denoiser indicated by py.

This section intends to highlight to most fundamental aspects and formulations of dif-
fusion models. For a comprehensive mathematical foundation the work Understanding
Diffusion Models: A Unified Perspective by Calvin Luo [21] is an excellent resource. The
following explanation is based on insights from this and from the course Deep Generative
Models (UGent, 2025) by Dhoedt et al.

2.1.1 General

A diffusion model can be modeled as a restricted markovian hierarchical VAE (M-HVAE)
as shown in Figure The forward process is a fixed noising process that adds noise

10
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to the data. The backward process is a learned denoiser that tries to reverse this noising
process. The forward process is defined by ¢(z; | x;—1) and the backward process is
defined by po(z;—1 | x¢). The forward process is fixed and not learned, the backward
process is learned. The goal of training is to learn this backward denoiser. The end of the
forward process results in a multi variate gaussian. This is the prior distribution. When
using the model we sample a point from this gaussian and apply the learned denoiser.
Each results from the denoiser is passed again into it, until we reach the original data
space. This is a stochastic process. Thanks to this de novo data can be generated that
resembles our original data.

2.1.2 Loss function

The loss function of diffusion models is similar to the ELBO loss used in the VAE [18].
The ELBO stands for Evidence Lower Bound and it defines a lower bound on the log
likelihood of the data. The goal is to maximize the log likelihood. By using the ELBO
a model can iteratively try to improve this ELBO. The ELBO loss is the negative ELBO
since we will try to minimize it.

In the VAE the ELBO can be divided in a reconstruction term where the model tries
to reconstruct a sample successfully and a regularization term that tries to make sure the
latent dimension has the correct prior. Since the diffusion model a special form is of a
M-HVAE the ELBO loss can be defined for this chain:

LErBo = — Ey(z1|20) log po(zolz1)] + Dkr [q(zr|z0) || p(27)]
T

+ ) Boyorfmo) [PxL [a(@i-a]ze, 20) || o (i1 |20)]]
P (2.1)

T
=Lo+ Y Lia+Lr
t=2
The loss now still tries to maximize the log likelihood of the data. The first term £y
is a reconstruction term that tries to reconstruct the original data from the first noised
version. The second term £;_; is a sum over all intermediate steps where the model tries
to learn to denoise from one step to the previous one. This is done by minimizing the KL
divergence between the ground truth denoiser and the learned denoiser. The last term
L7 is a regularization term that tries to make sure the last step of the forward process
matches the prior distribution.

2.1.3 Denoising

The backward process is defined by ¢(z;—1 | =+, o) which is the ground truth denoiser.

Q(xt—l | aftﬂfo) =N (il’t—l; ﬂ(ﬂit,mo% Bt($t7x0)f> (2.2)

where 3, is the variance of the noise added at step ¢ in the reverse process.
During training the model learns this function. The learned denoiser looks like:

po(zi—1 | 2¢) = N (x4—1; po(xe, t), Xo(x, t)) (2.3)

where Xy(z¢, t) is the variance predicted by the model at step ¢. For the covariance a time
dependent profile is used so that this does not need to be learned.
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ue (e, t) can be learned directly or we can learn the amount of noise that was added
to z;. This is done trough ey(xy,t)

Given the noisier sample x; and the predicted noise €y(x,t) the next step can be
computed:

1 1-— (677
= (x—- ——L t 2.4

with oy = 1 — ; A higher o, means more signal is preserved (less noise added). This
is because it has an inverse relationship to 5 which is the variance of the noise added
at that time step. When the variance is low you retain more of the previous step in the
forward process (when set to zero for example you copy over the step), when it is high
you add more noise. z is a point sampled from the prior distribution (typically a gaussian)
o controls the amount of noise to add to the backward process, this is heeded because
each diffusion step is a stochastic process. In each forward diffusion step you sample
from a conditional gaussian distribution, not only at T"! If o; would be zero then each step
would be deterministic and we would lose sample diversity.

In this work the epsilon formulation will be used. The function to predict the added
noise will be called EpsilonNet throughout this work. It will play a crucial role in helping to
optimize these models. Figure[2.2]outlines how this epsilon net works. Be aware that this
epsilon net is where the deep learning happens. Our epsilon net is a learned function.
We want to learn a function that predicts noise. A neural network can be considered a
universal function approximate and thus serves as the ideal candidate.

fort=T..1 How much sl o fom rvios sep .W S ) l. i v prces

! : o(x_t, 1)

(positional time encoding) E ps i I on Net

X_t Predict “noise"

input noisy data

1 1-g
Xr—1=j<xr— ﬁ go{xt, t)) +o0;z
: 1-d

Denoiser X_t-1

Take the noisier step and subtract the noise

Figure 2.2: EpsilonNet

When sampling from a diffusion model the full diffusion chain is used. Recall that
going forward from 0 to 7" means adding noise. Therefore when denoising we start at
time step 7" and sample from the prior distribution. In the standard implementation this is
typically a multivariate gaussian. For example 128 x 128 in the case we want the generate
images of 128 x 128. In figure [2.2] you can see that this net can be used for multiple time
steps, mimicking the classic diffusion chain.

Algorithm [ outlines the sampling procedure.
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Algorithm 1 Sampling

1: xp ~ N(0,1)
2. fort=T,...,1do
3 z~N(,I)ift>1,elsez=0
4:  Xp_1 = \/% (Xt — % Eg(Xt,t)) + 012
5: end for
6: return xg
2.1.4 Training

Training will always happen for one diffusion step. When implementing a diffusion model
a simplified loss is used since, we optimize one diffusion step at a time. Then this loss
becomes:

Lsimple = Buc ||e — eg(a, 1) (2.5)

Algorithm [2] outlines the training regime. This regime is possible because a noised
version can be computed trough a closed form solution. Consequently the ground truth
added noise can be predicted, and the EpsilonNet can learn to predict the added noise.
By sampling over all time steps randomly we start to learn a denoiser that can denoise
from any time step to the one before it.

Algorithm 2 Training

1: repeat

2. x9~ q(xo)

38: t~ Uniform({1,...,T})

4:  e~N(0,1)

5.  Take gradient descent step on

Vg He — €p (\/(STth + V1 — aye, t) H2

6: until converged

2.2 Diffab
My starting point where two papers by Luo et al. [22] and Zhou et al. [36].

+ Antigen-Specific Antibody Design and Optimization with Diffusion-Based Genera-
tive Models [22]

+ Antigen-Specific Antibody Design via Direct Energy-based Preference Optimization
[36]

They both covered antibody-antigen design. The paper by Luo et al [22]. introduced
a diffusion model that learned to denoise masked CDR regions on an antibody-antigen
complex. Just like in image diffusion this masked region was noised and the model was
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trained to denoise it to a suitable CDR region. In this way the model can generate de
novo CDR regions that may show better binding affinity and show promise as better
drug candidates for example. The second paper builds upon the work of luo et al and
introduces energy based optimization to make the structures more biologically relevant.
Since in polypeptide chains low energy states are a good indicator that these are suitable
ones.

Specifically the Diffab was studied in depth and forms just like the paper by the basis
for this work.

Diffab introduces novel approach for antibody design by leveraging diffusion models. It
focuses on the joint optimization of sequence and structure. Typically the sequence is not
jointly generated but first only the antibody backbone structures is generated, afterward
the sequence is found using an inverse folding model and subsequently the side chains
are placed on the backbone.

The diffab model can be trained to either jointly infer multiple cdr regions or one spe-
cific one. Since the limited training data that is available single region optimization pro-
duces better results.

In an ideal world a model would invent an antibody from scratch given an antigen.
This model works by starting from an antibody-antigen complex. It allows one to specify
a cdr region that needs to be optimized. A benefit of this approach is that the problem
becomes easier and more feasible to train with the limited data and compute.

To be able to generate a novel antibody this flow would be followed:

1. Find an antibody-antigen complex
Mask out the region you want to generate denovo for example CDRH3

Use the model

A w0 D

A new antibody-antigen complex that has the same framework as the starting one
but with a new CDR region.

Internally the model represents antibodies using:
* position
— Each residue’s CA atom is represented by its 3D coordinates (x, y, z).

* orientation (or rotation (often used interchangeably in this work))

— Each residue’s orientation is represented by a rotation matrix (3x3) that de-
scribes its spatial orientation. Or by an axis-angle representation.

— Important to note orientations are described in an equivariant way. Meaning
they remain unchanged under global transformations of the complex, such as
rotation and translation, ensuring that the model’s predictions are consistent
regardless of the antibody’s position or orientation in space.

* sequence

— Each residue’s amino acid is kept track of. Either represented by letter, number
or one-hot encoding.
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Figure from the diffab paper. lllustrates this diffusion process.

Prior R! Sample From p ({s!"*,x/™", 041} [R!, C) CDR
@) LENE) e | RS @) s D[
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2 e — o
T@IETT, L Y T e

Figure 2.3: Diffab Diffusion Process. Source: Diffab paper [22]

 For position the process is similar to that of the classic diffusion that was discussed
above.

» For orientation the forward process operates on SO(3) representations. It adds
isotropic gaussian noise at each step. This effectively shakes the rotation each
time a bit. Each direction it shakes in is equally likely. All of these random shakes
are applied in a sequence. The backward tries to predict these to reconstruct the
original rotation.

— SO(3) is the set of all rotations in 3D space. It can be presented by rotation
matrices or by an axis-angle representation.

» The rotation matrix can be used as follows:

. _ pT 3
i [Vrotframe = R'v, v eR”.

rotates the frame

v = Rv
———

rotates the point

« The axis—angle can be encoded as a 3-vector w whose magnitude ||w|| is
the rotation angle and whose direction w/||w|| is the rotation axis.

 Finally the sequence diffusion can be seen as discretized way of doing diffusion
internally this happens by operation on the categorical distribution rather than the
gaussian one. The prior is a uniform categorical over the masked sequence.



CHAPTER 2. LITERATURE REVIEW 16

2.3 SIMS

Diffusion models are very data hungry. They require large amounts of high-quality data to
train effectively, which can be a limiting factor in their application. A naive way to augment
our training data would be to generate synthetic data. This could be in a simple way by
using the existing data to create variations or by using generative models to create entirely
new samples. In fact one could use its own trained model to generate new data, then use
this data to further train the model. However this strategy typically is not very effective
since a model will never model the ground truth perfectly, it will have slight errors. When
we keep feeding the model generated data these errors will become worse and worse
leading to a model that doesn’t perform well anymore.

A new existing approach to address this issue has been introduced in the paper:
Self-Improving Diffusion Models with Synthetic Data by Alemohammad et al. [3].

The authors claim that when feeding a model synthetic data generated by itself, it can
lead to a positive feedback loop where the model goes MAD. MAD standing for: model
autophagy disorder. Just the type of getting worse and worse that was described earlier.

Their idea uses guidance to counteract this. Guidance is a technique that has been
used in diffusion models to steer the generation process towards desired attributes or
characteristics. Guidance is an inference time technique were typically the predicted
noise is modified to steer the generation process.

Their technique uses guidance alongside a base model that is trained on the original
dataset, and an auxiliary model that is trained on synthetic data generated by the base
model.
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A model will not capture Base model trained with : ;
@ the true ground truth. Errors due to data from dataset Aux model trained with
limited data, model complexity... data from base. It amplifies

Some of this error can be captured the errors made by base.

The bias between aux and base,
has traits of the bias between
base and the ground truth. Use
this to shift base closer to the
ground truth. w controls scale

Ground Truth

Data Distribution

not get you closer than the initial gap between GT and base. Too strong
aux models will introduce new errors. Weak aux models will not capture
the bias of base enough.

This extrapolation removes some linear bias. It can not remove all errors.
@ You can’t shift forever, a new aux model with a larger error will

Ground Truth
Data Distribution

lllustrative

Figure 2.4: The SIMS idea visualized. Inspired by the SIMS
paper

Intuitively their technique works as follows:



CHAPTER 2. LITERATURE REVIEW 18

A trained model will never be as good as the ground truth and will move away from
it in some direction. When training a new model based on synthetic data from the first
model it will move away even further in a similar way. This error we can measure and use
to get closer to the ground truth. This is visualized in figure

The algorithm they use to achieve this is outlined in figure 2.5

Algorithm 1 SIMS Procedure

Input: Training dataset D
Hyperparameters: Synthetic dataset size ng, guidance strength w, training budget B

1: Train base diffusion model: Use dataset D to train the diffusion model using standard training,
resulting in the score function s, (¢, t).

2: Generate auxiliary synthetic data: Create an internal synthetic dataset S by generating ny = |S]|
samples from the base diffusion model.

3: Train auxiliary diffusion model: Fine-tune the base model using only S within the training
budget B to obtain sg, (x;,t). Discard S.

4: Extrapolate the score function: Use sy_ (x4, t) to extrapolate backwards from sg, (¢, t) to the
SIMS score function

so(xe,t) = sp, (@1, ) — w(sp, (T, t) — Sp, (x4, 1)) = (1 + w)sp, (21, 1) — wsg_ (x4, ).

Synthesize: Generate synthetic data from the model using the SIMS score function sg(x¢,t).

Figure 2.5: The SIMS algorithm. Source: SIMS paper [3]

2.4 Overview

Beyond the topics that were covered above, a brief discovery in the literature surrounding
antibody design was done. This was mainly for extra background in understanding and
to provide inspiration for implementation techniques.

Table gives a concise summary of these with a one line description. This table
does not aim to be a review, but rather a collection of key papers that informed this
research. In the next section the areas of inquiry are discussed they have been informed
by these papers and the discussions with advisors.

It is not an exhaustive list of all the papers that were read, but it does cover the
most important ones. The papers are categorized into general, specific, deep learning
and miscellaneous. The general category covers papers that are relevant to the overall
topic of generative antibody design. The specific category covers papers that are directly
related to the topic of this thesis. The deep learning category covers papers that are
relevant to the deep learning techniques used in this thesis. The miscellaneous category
covers papers that are relevant more for technical background.
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Category Title

Description

General

Accurate structure prediction of
biomolecular interactions with Al-
phaFold 3 [1]

De novo design of protein structure
and function with RFdiffusion [35]

Boltz-1 [5]

Simulating 500 million years of evo-
lution with a language model [13]

Generate 3D structure from
sequence

De novo protein structures

Generate 3D structure from
sequence

Fill in the gap in the se-
quence, latent space con-
tains 3D representation

Specific

Antigen-Specific Antibody Design
and Optimization with Diffusion-
Based Generative Models for Pro-
tein Structures [22]

Antigen-Specific Antibody Design
via Direct Energy-based Prefer-
ence Optimization [36]

Joint Sequence and structure
optimization of antibodies

Same but added RL with en-
ergy optimization

DL

Understanding Diffusion Models: A
Unified Perspective [21]

Understanding Reinforcement
Learning-Based Fine-Tuning of
Diffusion Models: A Tutorial and
Review [33]

Self-Improving Diffusion Models
with Synthetic Data [3]

Understanding math behind
DDPM

RL for DDPM

Augmenting the dataset with
synthetic data for DDPM

Misc

Optimization of therapeutic antibod-
ies by predicting antigen specificity
from antibody sequence via deep
learning [23]

SE(3)-transformers: 3D roto-
translation equivariant attention
networks [12]

Lie Groups for Computer Vision
[11]

A model that predicts if it will
bind (for in vivo data)

simply put: be insensitive to
the rotation of the 3D struc-
ture

Lie algebra useful for SO(3)
transformations

Table 2.1: Overview of relevant literature.
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2.5 Areas of inquiry

After exploring the state of the art, and numerous advisory meetings, four key areas were
identified that are worth exploring with the thesis. See Figure [2.6]for details.

0 HALLUCINATION (e LIMITED DATA \

The model can fake structure
May work on paper but in the lab worth nothing SaDb (10 000 samples)

Understand and compare
the existing models via Augment the training data
Inference experiments

* Run generation of Ab on different * Use extra training signal from
models and compare. protein sequences
* Example: Generated sequence -> » 300M sequences
AF3 VS Direct sequence and * Use generated structures from
ST EEE Ea AF3 (300K complexes on PDB)

» Use binding prediction model to see
if the structure are better (use
complexes that are compatible)

* Use synthetic data
* Typically does not work
* Use guidance with

Reduce hallucination synthetic data

AF3 technique: Adversarial

Fine-Tuning with Feedback) k j
@ CONSTRAINTS \ @ USABILITY \

Limited to using templates, needs
a Ab complex, limited control,

The antibody needs to be
feasible: Binding affinity, Toxicity,

Thermostability, Stability (folding) difficult to use, interpret...
Towards more accurate scoring Make model more general
* RL based fine tuning (such as Create pipeline around model
direct energy optimization)
* Guidance

* Multitask learning
* Learn stability, binding

affinity, etc. together,
extract latent
representation that
represents quality. Use as a
training signal

 Testing constraints directly is

not feasible : use proxies.

" AN J

Figure 2.6: Areas of inquiry




Chapter 3

Foundations

The chapter foundations covers the underpinnings of the proposed framework for im-
proving generative antibody design (DGAD). Including: the hypothesis we put forward,
the chosen model, model architecture, and terminology used throughout this work.

3.1 Hypothesis

In the literature review the SIMS technique for image diffusion was discussed as a way
to improve sample quality without increasing the dataset size. This by employing an
auxiliary model trained on synthetic data trained by our base model. At inference time
the auxiliary model is used to guide the base model towards samples that are closer to
the ground truth data distribution. The idea is that the error produced by the auxiliary
model can be used to adjust the predictions of the base model, effectively "nudging” it
towards the ground truth.

This technique can be seen as a form of augmenting our dataset, without increasing
the ground truth dataset. This is precisely one of the key challenges that was covered in
the areas of inquiry.

The available structures of antigen-antibody complexes is limited. One well known
database of such structures is SabDab [10]. This database contains only a few thousand
structures. While this is a good start, it is still a limited amount of data for training a deep
learning model.

Hypothesis

Can negative guidance improve diffusion models for generative antibody design. By
first training an auxiliary model using synthetic data from the base model. Then
using the auxiliary model to guide the predictions of the base model closer to the
ground truth data distribution.

Thus the hypothesis of this thesis is to test if the SIMS [3] technique can also be
applied on diffusion models for generative antibody design.

21
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3.2 Choosing a model

In this work the focus lies on verifying if this hypothesis holds. Therefore it would not be
productive to create a new model from scratch. Instead it is better to build on top of an
existing model. This way the focus can be on the proposed method and not on building a
new model. Naturally the explored Diffab [22] serves as a suitable candidate.

In antibody generation, it is common to build the design in separate steps. First, a dif-
fusion model is used to generate the backbone structure. Then, the sequence is designed
using an inverse folding model such as ProteinMPNN [9]. Finally side-chain packing al-
gorithms are applied to place the side-chain conformations on top of the backbone. This
approach can work well, but it depends on multiple components and make training and
inference more complex.

DiffAb offers something more integrated. It models sequence and structure together,
predicting the amino acid type, backbone position, and orientation of each residue in the
same diffusion process.

Practical considerations also played a role. The DiffAb codebase was well structured
and allowed for direct extension. Just as important, it was trainable on the available
infrastructure at IDLab [27]. In this way, it combined both scientific interest and technical
feasibility.

Additionally the dataset it used was SabDab[10] a trusted dataset of antibody-antigen
complexes. This dataset provided a rich source of examples for training and evaluation.

For these reasons DiffAb was selected as the foundation of this work. It serves as the
baseline against which the proposed DGAD framework is developed and evaluated.

3.3 Diffab

In the literature review, the DiffAb model was introduced as a novel approach for antibody
design by leveraging diffusion models. It focuses on the joint optimization of sequence
and structure.
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3.3.1 Data pipeline

The discussed guidance technique is an inference time technique where the sampling
process of diffab will be modified. To enable this a good understanding of the internal
data representation of Diffab is crucial.

At a high level the data flows trough the model as shown in Figure [3.1]

The PDB file (that contains the 3D structure, for every atom it’s position along with
other information) is used as the input. This file is then processed to extract relevant
features and create a suitable representation for the model. This involves several steps,
including parsing the PDB file, extracting atomic coordinates, and creating masks for
different regions of the protein. The final output is a batch of data that can be fed into
the diffusion model, as shown in Figure [3.1] The diffusion itself will operate only on
the backbone atoms. However, it does use the context of the full structure. Then after
diffusion the new backbone is available. Diffab will use the original template complex and
put only the generated backbone atoms in it's place (for single region optimization). Next
it is saved as a new PDB file. Finally, an external tool like PyRosetta [7] can be used to
perform side-chain packing.

PDB Prepare data BATCH
Parse PDB, transforms, and batch Backbone +
Indicate what region Side chain
needs to be optimized info
> Diffusion Backbone
Diffab model base model

Reconstruct PDB
Combine starting structure, L
with generated backbone New de novo

No side chain packing. Region

Figure 3.1: Sampling with Diffab

Zooming in on the data preparation a lot of transforms happen before a batch is ready
to be fed trough the model. Figure outlines the whole flow from PDB to batch, with a short
explanation for each step. [T]

'Tip: in the pdf you can zoom in on this is text. Most diagrams in this work are zoom ready.
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— Dataset

s Transforms

PDB CHOTIA PDB CLUSTER SPLIT
» > >
Atoms - mainly heavy - Renumber so that CDRs are mmseq - cluster at 50% seq train (~9000) - test (11) - val
backbone + somethimes at specific seqpos, if too long similiraty (20) - stratified split
sidechain - residue id + use insertions
residue type + chain id Batch

This will flow into the model
See table for details.

MaskSingleCDR MergeChains PatchAround PaddingCollate
Anchor

Use vector to indicate CDR
positions, Pick chain/CDR Merge all chains into one long The model will operate on 256 Add padding if <256 residues.
(specify CDR3), mask this sequence - mark using vector residues. It will include the Mark them using mask for
region with generate flag and to which chain they belong ‘CDR region that will be model True True True ...False
place anchors around generated False
e - ~
g ~o
- ~
- ~
—— ~
- ~
- ~
- -
- ~
- ~
- -
- -
- -
- ~
~
S

Padding + Complex - Max 256 residues

N

I
Target CDRH3
i

I 128 e
- - Closest Antibody Residues - -

=256 residues

Figure 3.2: Data preparation pipeline

Table [3.1] outlines the final structure of a batch. (This table was also used as a refer-
ence during implementation.). This batch is now ready for diffusion.
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Key Purpose Shape Example Value
chain_id Chain identifier (256, [H, H, L, A]
batch_size)
icode Insertion code (256, [,A,]
batch_size)
chain_nb Chain index (batch_size, [0,0,1,2]
256)
resseq Residue sequence (batch_size, [1,2,1,1]
number (PDB) 256)
res_nb Internal residue index (batch_size, [0, 1,2, 3]
256)
aa Amino acid type (as in- (batch_size, [0,4,7,1]
teger code) 256)
pos_heavyatom Heavy atom coordi- (batch_size, [25.76, 6.87, 3.76]
nates 256,
max_atoms,
3)
mask_heavyatom Mask for used heavy (batch_size, [true, true, false]
atoms 256,
max_atoms)
generate_flag Mask for residues to (256, [false, true, true, false]
generate batch_size)
cdr_flag Mask for CDR residues (256, [false, true, true, false]
batch_size)
anchor_flag Mask for anchor (256, [true, false, false, true]
residues batch_size)
fragment_type Residue type (heavy/- (256, [0,0,1,2]
light/antigen) batch_size)
origin Patch origin (for center- (batch_size) [12.3, 8.7, 5.1]
ing)
patch_idx Indices mapping patch (256, [0, 1,2, 5]
to full structure batch_size)
mask Mask for real vs. (batch_size, [true, true, true, false]
padded positions 256)

Table 3.1: Batch dictionary keys, their purpose, shapes, and
example values.
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3.3.2 Diffusion process implementation

The sampling process of Diffab is at high level very similar to the sampling procedure
discussed in the literature review on diffusion models. Figure [3.3|outlines the flow trough
this epsilon net.

Like in traditional diffusion models the denoising process happens in a series of steps.
In each step the added noise is predicted using the epsilon net and removed from the
current noisy sample using a denoiser. This is done iteratively until the final denoised
sample is obtained. Remember that denoising is the reverse process. It happens from
times step T to 0. Thus when sample ¢ enters the epsilon net and is then passed to the
denoiser the sample t_; is predicted.

The epsilon net takes as input the current noisy sample. For diffab this is represented
as the backbone position, the orientation and the amino acid associated for each residue.
Additionally a context embedding is passed to the epsilon net. Finally also the current
time step is included as input. In this way we don’t need to use a separate epsilon net
for each time step. This is an important factor in making diffusion models work, since
weights can be shared across time steps.

The context embedding contains:

» Residue features: Information specific to each residue. This includes the amino
acid type, dihedral angles, masking information (for example when not used, when
generated)

+ Pairwise features: Information about the interactions between pairs of residues.
This for example includes angles between backbone atoms.

Position Denoiser | — ; 1

~ Standard DDPM

p_t

input noisy position
Ca backbone atom (x,y,z)
vt EpsilonNet

Predict “noise"

How much to rotate the current rotation R otat io n De n oi se r —> v_t1

Apply rotation to current rotation
R

orientation residue
(either axis-angle or R rotation matrix)

aa_t

%= . |
residue [0-20[
c 0
elief of what the prior
distirbution looks like at
t time step zero

(positional time encoding)

context embedding

Sequence Denoiser — * at1

Approximate the posterior g(c_t-1lc,c_0)

Figure 3.3: Denoising in Diffab

A key in understanding this epsilon net is that unlike images where the denoising
happens on all pixels, in diffab denoising happens for each residue in the sequence sep-
arately. Thus the denoiser only works in the case of position only on the x,y,z coordinate.
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Whereas for images it would not operate on a flattened or 2D representation of all pix-
els. So for 10z10 grayscale this would amount to 100 values. In diffab only one pixel is
considered. At first glance this might seem odd, and it might not seem to work since it
does not keep in mind the rest of the structure. However, remember that a context em-
bedding is also passed to the denoiser. This is like a summary of the rest of the structure.
The denoiser uses an attention mechanism internally and can thus attend to all residues
in the sequence. For each residue the context of the whole structure is passed along
and thus denoising does not happen in a vacuum. The big benefit is that this makes
the model much more efficient. The number of parameters can be much lower. This is
crucial since compared to image datasets that often have million of samples our train-
ing dataset has only around 9% samples. This again stems back to the idea of weight
sharing, weights are shared across residues. Additionally parallelism is increased since
denoising happens not only across the batch dimension but also across residues.

The epsilonnet of diffab has three different heads (the last part of the neural network):

» Position head: This head is responsible for predicting the noise added to each
position. It thus predicts ¢ like standard diffusion.

» Orientation head: This head predicts the next orientation that has to be applied.

» Amino acid head: This head predicts a categorical distribution over the amino acid
types for each residue. The distribution represents the prior belief of the original
distribution.

Next unlike traditional diffusion now a separate denoiser is used for each head. For
the position this denoiser operates similarly to original diffusion.

For the orientation a special denoiser is used. Conceptually it works by applying
rotation after rotation. Imagine a cube in step 7" we start from an initial rotation, the
next prediction says how much to rotate this cube, and so on. If we sequence all these
rotations we get the final rotation.

For the amino acid denoising a categorical denoising is done. This denoiser uses
both the current amino acid sequence, and the predicted prior ¢q. First each amino acid
is turned into a categorical distribution by using a one-hot encoding which creates ¢;.
Then the conditional distribution is calculated using these two which mimics ¢(ci—1|ct, co).
When calculating both are mixed with a flat categorical distribution since this mimics the
forward diffusion process.

After the conditional distribution has been calculated, the next amino acid is sampled
from this distribution. This sampled amino acid is then used in the next denoising step.

Finally after all denoising steps are done, the final denoised sample is obtained. This
sample contains the predicted backbone positions, orientations, and amino acid types for
each residue in the sequence.

3.4 Terminology

Throughout this work, several terms are used frequently. To ensure clarity, the following
definitions are provided:

« Paper model/results: The original Diffab model, using the weights provided by the
authors.
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+ Original model: The original Diffab model, but retrained from scratch using the
SabDab dataset. No changes made to the codebase.

+ Base model: The DiffAb model trained on the CDRS3 region with the new data split
and sampling strategy.

» Aux model: The auxiliary model trained on synthetic data generated by the base
model.

+ DGAD (framework): The proposed framework that integrates negative guidance
into the diffusion process for improved antibody design. DGAD stands for Deep
Generative Antibody Design.



Chapter 4

Methodology

The methodology chapter cover the key steps that were taken to improve the starting
Diffab model [22]. This includes refining the data split, enhancing the sampling strategy,
and implementing negative guidance as a proxy to augmenting the dataset thanks to an
auxiliary model trained on synthetic data.

4.1 Improving the datasplit

The original Diffab model uses a datasplit with a test set of 11 samples, and a validation
set of 20 samples. To the best of our knowledge. All the other samples are used for
training.

The split happens on cluster level. This means that all samples from a single cluster
are either in the training, validation, or test set, but not in multiple sets at once. This is
to make sure the split is as much i.i.d as possible. The clustering in diffab happens with
MMseqs2 [32] at 50% CDR sequence similarity.

Although keeping the training set as large as possible makes sense to train the diffu-
sion model since the dataset is already quite small this inhibits us to have a test set that
has statistical significance when comparing different techniques.

Therefore a new datasplit was created. A splitis defined as : [ratioyqin, Tatioy, ratioest]

Creation of the new split To create the datasplit a few approaches were considered:

« Manual: You could in theory pick your split manually like in the original paper. How-
ever, this doesn’t allow for seed experimentation, and is labour intensive.

+ Basic: The basic split happens on cluster level if we want a split like [0.80, 0.10, 0.10].
Pick for each cluster randomly to what set it belongs, with these probabilities. With-
out replacement. Although this will not exactly be equal to the intended ratios across
samples it will be close enough.

» Heuristic: Using the previous approach the clusters are split according to our in-
tended distribution however some sets might by accident receive a large cluster
while other might get small ones. To have more balance we could first sort the
clusters by size, then group clusters of equal size together, and finally within each
group pick the clusters randomly according to the ratios. When it is uneven we as-
sign them to train. This approach was tested but needed a lot of further tweaking to
get a good split for the bigger clusters (since there are not a lot of them)

29
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* Hybrid: The basic split showed similar results to the heuristic ones. However,
picking a good split for the bigger clusters was difficult and depended a lot on the
seed. With the hybrid approach only the big clusters were split manually, and the
rest was done randomly with a seed. Moreover, the test samples of the original
Diffab paper are always included in test, this can be useful when comparing results.
In the end this method made sure that the test and val set had some big clusters
without taking away too many samples from train. While retaining the benefit of
using different seeds. This strategy was eventually chosen.

Figure shows the difference between the original split and the base split. The
original split is used in the original model (for comparison), and the base split is used in

the base model of this thesis.

(2831 clusters)

Column

(a)
Before Original split: the base split has only a
few samples in the test and val set. It ignores
large clusters, and the test samples are hard
coded.

Cluster Distribution Heatmap (2831 clusters)
Blue=Train, Green=Val, Red=Test
b lect, [8558, 439, 644], s: 70

(b)
After Base split: this is the final base split. It
uses a hybrid approach; the big clusters are
split manually (first two rows). The rest are split
randomly using a seed. The test and val set
are more representative of the overall dataset,
while retaining enough samples to train.

Figure 4.1: Comparing the original split and the base split. Each
cell in the matrix represents a cluster. The number in the cluster is
the amount of samples. The largest clusters are at the top left and

it decreases from left to right and top to bottom. The color
indicates if the cluster is in the train, val or test set.
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4.2 Improving sampling

Although, the diffab paper uses a clustered split, it does not use this information during
training. Each sample is picked uniformly at random from the training set. Moreover,
epochs are not employed and it just picks randomly this means some samples will be
repeated more often than others and in theory some might never be seen by the model.
This means that if a cluster is large it will be overrepresented during training, while small
clusters will be underrepresented. This could lead to overfitting on the large clusters, and
poor generalization on the small clusters.

The other extreme sampling strategy is: First randomly shuffle the clusters, then pick
one sample from each cluster in a round robin fashion. This way each cluster is repre-
sented equally during training. However, this means that some samples of the smaller
clusters will be seen more often than others, and the larger clusters will not be fully uti-
lized. This could lead to underfitting on the large clusters, and overfitting on the small
clusters.

Thus, a balanced approach is needed. Moreover, it would be useful to introduce the
idea of epochs. This would allow us to easily resume training from a certain epoch, and
it would make sure all training data is seen.

4.2.1 Balanced sampling

There are two extremes:
+ Original sampling: samples are picked uniformly at random from the training set.
» Round robin sampling: each cluster is represented equally during training.
Sampling can be represented as a probability distribution over the clusters:

» The original sampling strategy samples according to a size proportional distribution.
i.e clusters with a larger size have more chance of being picked.

» The round robin sampling strategy samples according to a uniform distribution over
the clusters.

Thus we want to interpolate between these two distributions.
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4.2.2 Linear

The most easy and intuitive way to this is using linear mixing:

pmix(c) = aporiginal(c) + (1 - a)punifarm(c) (41)
where
Pmix(€) is the sampling probability for cluster ¢ used by the sampler,
Poriginal (€) = [?76 is the size-proportional (raw-frequency) distribution,
Zj:l 1
1 . . .
Duniform(€) = e is the uniform distribution over clusters,
a € [0,1] is the mixing coefficient controlling the balance,
a=1 recovers poriginal (large clusters dominate),
a=20 recovers punitorm (@ll clusters equally likely),
0<a<l interpolates between the extremes, reducing dominance of large clusters,
Ne is the number of samples in cluster ¢,
K is the number of clusters.

4.2.3 Exponential (Skip-Gram model, word2vec-style)

Another alternative is to use a sampling procedure like the one used in word2vec [19],
which employs negative sampling [[24], [19]] to adjust the probabilities of selecting dif-
ferent clusters. When creating word embeddings a similar problem is faced. There are
words that appear a lot more than others in corpuses of text and thus are overrepre-
sented. For example, common words like "the" or "and" occur much more frequently than
rarer words. This is analogous to our clusters where large clusters may dominate the
training process.
When sampling words there are two extremes:

» Sampling uniformly from the vocabulary. Too much emphasis on rare words.

— This is analogous to original sampling from clusters. Where we sample as
much from large clusters as from small ones. Samples from small clusters will
be underrepresented.

» Sampling from the vocabulary according to word frequency: frequent words like the
will be overrepresented:

— This is analogous to uniform sampling from clusters. Where we sample as
much from large clusters as from small ones. Samples from small clusters will
be overrepresented.
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(ne)®
Ponl€) = S e 2
where

Pexp(€) is the sampling probability for cluster ¢ used by the sampler,
Ne is the number of samples in cluster ¢,
K is the number of clusters,
a € (0,1] tempering exponent(e.g., o = %),

a=1 recovers poriginal(¢) (large clusters dominate),

a—0 tends to pyniform(¢) = % (all clusters equally likely),

0<a<l reduces dominance of large clusters and boosts small ones.

This technique is very much an empirical one, there is no true mathematical proof why
this works better to the best of our knowledge. The authors found that a value of & = 0.75
works well in practice for word embeddings, and this was also used as a starting point for
our experiments.

One possible intuition is that when this form of mixing is smoother and more gradual
than the linear one. Since in the distribution each cluster size is divided by the sum of all
cluster sizes raised to the power of a. This means that large clusters will have a different
scaling behavior compared to small clusters. Making it more smooth.

4.2.4 Implementation

To implement this a custom PyTorch data sampler was created. It can be found in
DGAD/diffab-main-edit-1/diffab/datasets/sampling.py.
The sampler has the following features:

» Coverage guarantee: every sample is seen at least once per epoch.

» Oversampling: large clusters are sampled more often, according to a tunable prob-
ability distribution.

Flexible mixing: choose between linear interpolation and exponential scaling for
cluster probabilities.

» Fixed epoch size: total samples per epoch = multiplier x dataset size.
» Reproducible sampling: uses local random generators and a seed per epoch.

Additionally a custom EpochTracker was build that allows the use of steps, and more
control over the training process while using the classic for epoch ; for batch in data loop.
It wraps the dataloader and provides an iterator for the epochs all the rest is handled in
the background. See sampling.py for more details.

The sampler uses sampling_balance as a hyperparameter:

+ sampling_balance (float): Controls balance between original and uniform sampling.

— 1.0: Original cluster distribution (proportional to cluster sizes).
— 0.0: Uniform distribution across clusters.
— 0.75: Recommended starting point (Word2Vec standard for exponential).
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4.3 Base model characteristics

The following section briefly reviews the characteristics of the base model.

Aside from the new split, and sampling strategy the base model was used for the other
techniques is trained by only noise/denoising the CDRHS3 region. Since within this work
we only focus on this region for simplicity. Sometimes the CDRH3 might not be present
for example in the case of nanobodies. Then a fallback mechanism is used, where the
model can use the CDRH1 or CDRH2 regions instead. If those are unavailable the LCDR
regions are used. Augmentation is also used during training by slightly altering the CDR
lengths. This is done by randomly adding or removing residues from the CDR region.
This makes sure the model does not overfit on a certain length, and can generalize better
to different lengths. The augmentation was also present in the original model.

Finally, a version with all CDR regions noised/denoised was also trained for compari-
son. Covered in the results chapter.

The characteristics can be found in table

TRAITS Optimization of selected CDR loop (small local changes) for
structure and sequence.
» Mask desired CDR region; keep length fixed; rest of struc-
ture unchanged.
+ Diffusion model: noise/denoise positions, orientations, and

sequence.
EXPERIMENTS Focus on CDRS3 results; sampling only for CDRHS3 region.
SPLIT Train (0.90): 8558

Val (0.05): 439

Test (0.05): 644
SAMPLING BALANCE Mode: linear / exponential

Range: [1, 0] (1 = original cluster distribution, 0 = uniform)

Recommended: 0.75 (Word2Vec exponential standard)
SEED 70

Table 4.1: Base model characteristics
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4.4 Negative Guidance for DGAD

Negative guidance is a technique used to steer the generative process away from un-
desired outputs. In the context of DGAD, we employ negative guidance to improve the
quality of the generated antibody structures by discouraging the model from producing
unrealistic or low-quality designs.

In the paper "Self-Improving diffusion models with Synthetic data (SIMS)", the authors
propose a method to enhance the training of diffusion models using self-synthesized
data. This approach provides negative guidance during the generation process, helping
to steer the model away from non-ideal synthetic data and towards the ground truth data
distribution.

Recall that our hypothesis was if the technique proposed in SIMS is also applicable
to generative antibody design.

In the following section we will explore how this technique was applied to the Diffab
model.

4.41 General

Augmention with
Negative Guidance

DGAD-A

Training
N ‘ - N
Diffab
SAbDab Generated
base model
Samples

Inference

Diffab

Auxilary model eps_guided = (1+w) eps_base - w * eps_aux

Figure 4.2: DGAD-A is the framework that employs negative
guidance to improve the quality of generated antibody structures.
The diagram shows the training procedure of training an auxiliary
model with self-synthesized data and the inference phase where

guidance is applied by using both models.
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The method involves training two models: a base model and an auxiliary model. The
base model is trained on the original dataset, while the auxiliary model is trained on
synthetic data generated by the base model. During inference, the predictions from both
models are combined to guide the sampling process. The combined prediction is given
by:

€guided = €base — W(weaua} - 6base) (43)

€guided = (1 + w)fbase — Weauzx (44)

Rewriting it in the last way leads to a more efficient implementation.

Note that in the SIMS paper they do this on the score function instead of the noise
prediction. This is equivalent since the score function can be expressed in terms of the
noise prediction (by scaling with a linear factor). A score function is an alternative param-
eterization of diffusion models that directly estimates the gradient of the log probability
density function of the data. This parameterization is not used in this work.

4.4.2 Creating the auxiliary model

A naive way to train an auxiliary model is to generate with the base model a new sample
and pass it to the auxiliary model to train. You could either generate a new sample each
time (this is shown in figure or form a dataset at the same time and reuse. The first
approach makes training slow. The second although faster isn’t ideal either since two
models need to be loaded and there is still overhead.
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SAbDab

Load model @&—

Prepare data BATCH
Parse PDB, transforms, and batch Backbone +
Side chain
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EVAL
> Diffusion Backbone
Base Model base model

Reconstruct Batch

L 5 Combine starting structure, BATCH
with generated backbone Backbone +

No sidechains on generated part Side chain

-> not needed info
. J
TRAIN ———@ Store model
Diffusion
Aux Model

Figure 4.3: The training procedure for the unique auxiliary model.
Each sample is generated from the base model during the training
of the auxiliary model. This technique works but makes training

too slow.



CHAPTER 4. METHODOLOGY 38

Therefore, to train the auxiliary model a two step approach was used:

1. First the base model is used to generate synthetic samples. These are saved in a
data base. Rather than saving the processed PDB files, the direct tensor represen-
tation used by the model is saved. This eliminates the need to reprocess the data
each time. It also avoids processing artifacts. This saves processing time when
training the auxiliary model and also makes sure that data is not organized differ-
ently by processing artifacts. The data is saved in LMDB [8]. LMDB is a key-value
database that uses memory mapping to store data on disk. This makes it very fast
to read data during training.

* Note internally the model operates on backbone representation (position, ro-
tation and sequence). When a sampling step is done during training diffab
expects the full structure (including sidechains, masks, etc) as input. However
after sampling the model only returns the backbone, afterwich it is reformatted
to the full structure. Therefore an adapted sampling procedure was created
that outputs the correct tensor representation for input into the model. This
way the output of one model (the baseline) can be used directly as input for
the auxiliary model.

2. Next the auxiliary model is trained on the synthetic data. A special dataloader is
used that will read the data from the LMDB database and reconstruct the tensor
representation used by the model.

* When training the auxiliary model two different regimes can be used. It can
either be trained from scratch so with random initialized weights. Or it can be
trained starting by initializing it with the weights from the base model. The
authors of SIMS [3] set forward this method as the best one. They say to train
for around 40% of the total steps used in the base model. In our case this is
80K steps.

This approach is outlined in figure [4.4]
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1 Generate for each sample in SabDab a couple of variants
(target: CDRH3 , 8 variants), save raw input tensors

SAbDab Prepare data BATCH
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2 Load input tensors from LMDB (after 1 epoch in memory, use 1 variant), make
batch, feed into aux model to train, reuse same data for N_steps, save model.

DGAD DataLoader BATCH

;amples > Create batch of raw input tensors from Backbone +
Side chain
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TRAIN Store model
Diffusion
L
Aux Model

she The aux model can either be trained from scratch for 200K steps
! OR be trained from the base model for 80K steps (finetune).
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Figure 4.4: The training procedure for the fixed auxiliary model.
The auxiliary is trained on a pre-computed dataset of synthetic
samples.
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4.4.3 Guidance on the position

To evaluate the effectiveness of SIMS, the technique was applied on the position of each
residue. This was chosen since the diffusion process on the position is similar too the
diffusion process on images. The position is represented as a (x,y, z) coordinate in 3D
space. Applying guidance on the predicted noise for the position is a euclidean operation.
Within the diffab implementation the EpsilonNet predicts both position, rotation and
amino acid type. During inference two epsilon nets are used, one for the base model
and one for the auxiliary model. The guidance is only applied on the position part of the
prediction. One drawback is that two models need to be loaded into memory. Before the
position is denoised guidance is done on the predicted noise as shown in figure [4.5

BASE

EpsilonNet

Predict “noise"

t A
P t Guidance

€ guidance = 1+ 9) Epage - © Equy Position Denoiser p_t-1

~ Standard DDPM

input noisy position R E— ]
Ca backbone atom (x,y.z) (positional time encoding)

context embedding

Painwise embedding
Residue embedding

AUX
EpsilonNet

Predict “noise"

Figure 4.5: The denoising procedure for doing guidance on the
position. The previous position p; is denoised by the base model
and the aux model. The outputs of both models are the predicted
noise that was added to the previous position. Then this noise is
used to compute the current position within the denoiser.

4.4.4 Guidance on the sequence

Unlike the position, the sequence is represented as a categorical distribution over the 20
amino acids. Therefore, the guidance needs to be applied on the logits of this distribution
or the probabilities.
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Listing 1: Code snippet for guidance on the position (simplified)

# For the base model

base_v_next, base_R_next, base_eps_p, base_c_denoised = self.base_eps_net(...)

- # (N, L, 3), (N, L, 3, 3), (N, L, 3)

# For the aux model

aux_v_next, aux_R_next, aux_eps_p, aux_c_denoised = self.aux_eps_net(...)# (N, L,
-~ 3), (N, L, 3, 3), (N, L, 3)

sim_eps_p = ((1+omega_pos_t) * base_eps_p) - (omega_pos_t * aux_eps_p)

p_next = self.base_trans_pos.denoise(base_p_t, sim_eps_p, base_mask_generate,
— base_t_tensor)

BASE
EpsilonNet

Predict “noise"

Logi |tbsm

t | Guidance

m (cy2) (positional time encoding)

Logits guigance = 1 +@)Logis - aLogits, SoftMax Sequence Denoiser aa_t-1

context

Pairwise embedding
Residue embedding

aa_t

residue [0-20

Logits

AUX
EpsilonNet

Predict “noise"

Figure 4.6: The denoising process when doing guidance on the
sequence.

For this the epsilon net was adjusted to output logits without a softmax layer. Next the
guidance is applied on the raw logits, and then the softmax is applied. Another version
that does the guidance directly on the probabilities rather than the logits has also been
implemented. The effect that guidance has in this case is that it might shift the distribu-
tion to favor certain amino acids more than others when taking the argmax. Figure
illustrates the guidance process in a similar way as for position. Finally a code snippet is
provided in listing [2|
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Listing 2: Code snippet for guidance on the sequence (simplified)

# For the base model

base_v_next, base_R_next, base_eps_p, base_c_denoised = self.base_eps_net(...)

-~ # (N, L, 3), (N, L, 3, 3), (N, L, 3)

# For the aux model

aux_v_next, aux_R_next, aux_eps_p, aux_c_denoised = self.aux_eps_net(...)# (N, L,
-~ 3), (N, L, 3, 3), (N, L, 3)

# Guidance on sequence
if self.config.dgad.sims.seq:
print('guidance on sequence')
sims_c_logits = ((1 + omega_seq_t) * base_c_denoised) - (omega_seq_t *
— aux_c_denoised)
#now do the softmax
sims_c = sims_c_logits
if self.config.dgad.sims.guidance_seq_on_logits:
sims_c = F.softmax(sims_c_logits, dim=-1)
else:
sims_c = base_c_denoised

_, s_next = self.base_trans_seq.denoise(base_s_t, sims_c, base_mask_generate,
< base_t_tensor)
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4.4.5 Guidance on the orientation

Applying rotational guidance is inherently challenging due to the nature of 3D rotations.
A naive a approach would be to mix the output of the rotational denoiser of the base
model with the output of the auxiliary model just like the positional guidance. However,
the position denoiser does not predict the added noise but the next rotation to be applied
to the previous one. When denoising the rotations are applied one after the other, in a
sequence. Say you have a cube ant it’s initial rotation in space, after the first denoising
step you will rotate it a bit by that rotation. Next for the second denoising step, you will
apply the next rotation to the already rotated cube, and so on. This sequential application
of rotations makes it difficult to directly mix the outputs of the two models.

Rfinal = Ry -+~ Ry - Ry sequential denoising of rotation (4.5)

Additionally, mathematically we want to find a mix of two rotations. This can not be
done in the same way as in euclidean space for positions. Therefore another approach is
needed.

This has not yet been fully explored and remains an open question for future research.
However, some progress was already made into how this can be achieved. This is still a
conceptual approach and provided as is.

Conceptual approach using Lie algebra. This approach has been an ad-hoc one. It
is based on advisory meetings, and was also used to experiment with the current LLM
models as a way to assist within a subject that is outside my expertise.

These were not one shot attempts, but rather an iterative process of refining the ap-
proach based on feedback and insights gained from discussions with the models. These
discussions were always aimed on making sure the methods and techniques were un-
derstood.

To ground these models they were conditioned on the work by Lie Groups for Com-
puter Vision by Eade [11]. Since this mathematical basis forms one of the keys in solving
this problem. Additionally, | used context from the codebase of this work to further im-
prove results.

This was very much a new way of working and an interesting experiment. My belief
is that in the future this will lead to engineering approaches on a higher level abstract
space. However it still required significant effort and is still not ready to be fully trusted.

The thought process is as follows:

» Conceptually we want to interpolate between two rotations. This can be done using
lie algebra in tangent space. In this space we can apply guidance as a euclidean
operation. Important to note is that the current rotation is applied on the sequence
of rotations before it, therefore the predicted rotations need to be anchored at the
current rotation.

The rotational guidance does not yet offer any benefits and makes model performance
worse to using position alone. Many hypothesis can be made why this is but a few:

+ Doing guidance on position moves atoms in space, but doing it on rotation too. They
might not be mixing well together.
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» The implementation is still lacking some fundamental aspects to making this work.

» The rotation might overshoot.

Doing rotational guidance seems inherently difficult after numerous iterations. Maybe
the approach in solving this should be a different one that is less error prone and sim-
pler. One approach that seems interesting to test in the future is: Use latent diffusion
[28]. Convert the rotation and/or position to a latent space that noises/denoises from a
standard multivariate gaussian. Do the guidance there on the predicted noise.
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Listing 3: Code snippet for guidance on the orientation. (concept)

def lie_algebra_guidance_so3_anchored_clipped(base_v, aux_v, guidance_strength,
[N R_t) :
S0(3) guidance using Lie algebra, anchored at the CURRENT state R_t.
Args:
base_v: (N, L, 3) axis-angle of base model's x0 prediction.
aux_v: (N, L, 3) axis-angle of aux model's x0 prediction.
guidance_strength (float or tensor broadcastable to (N,L,1)): omega.
R_t: (N, L, 3, 3) rotation matrices of the CURRENT noisy state.
Returns:
guided_v: (N, L, 3) axis-angle of guided x0 prediction (like your original).
# 1) Convert axis-angle vectors to rotation matrices (predictions)
base_R = so3vec_to_rotation(base_v) # (N, L, 3, 3)
aux_R = so3vec_to_rotation(aux_v) # (N, L, 3, 3)
# 2) Express both predictions as displacements from the CURRENT state R_t
# u_* are axis-angle vectors in T_{R_t}S0(3): u = log(R_t"T * R_pred)
Rt_T = R_t.transpose(-2, -1)
u_base = rotation_to_so3vec(Rt_T @ base_R) # (N, L, 3)
u_aux rotation_to_so3vec(Rt_T @ aux_R) # (N, L, 3)
# 4) Combine in the tangent at R_t
omega = guidance_strength
u_guided = (1 + omega) * u_base - omega * u_aux
#4.0 clip: llu_guided| < (1 + omega) * |lu_basell.
# u_base, u_guided : (N, L, 3) axis-angle tangents at the current state R_t
# 4.1) Compute base step length [lu_base| for each (N,L) item.
# .norm(dim=-1) - sqrt(x~2 + y~2 + z"2) over the 3-vector
# keepdim=True -+ keeps shape as (N, L, 1) so it broadcasts cleanly later
# .clamp_min(le-8) - replaces values < le-8 with le-8 (avoids divide-by-zero)
nb = u_base.norm(dim=-1, keepdim=True).clamp_min(le-8) # (N, L, 1), radians
# 4.2) Compute guided step length [lu_guidedll with the same guards/shapes.
g = u_guided.norm(dim=-1, keepdim=True).clamp_min(le-8) # (N, L, 1), radians
# 4.3) Build the target radius tau = (1 + omega) * [u_basel.

# - 'omega' can be a scalar or a temnsor that broadcasts to (N, L, 1).
# - Broadcasting: PyTorch auto-expands singleton dims to match (N, L, 1).
tau = (1 + omega) * nb # (N, L, 1), radians

# 4.4) Compute per-vector scale s = min(1, tau / [lu_guidedl|).

# - If |lu_guided| <= tau - tau/g >= 1 + s = 1 (no change).

# - If |u_guided|ll > tau - tau/g < 1 =+ s < 1 (shrink u_guided to lie on radius
— tau).

# .clamp(max=1.0) ensures we never *increase* the step (s=< 1).

s = (tau / g).clamp(max=1.0) # (N, L, 1) in (0,1]
# 4.5) Apply the scale per (N,L,3) tangent vector via broadcasting over the last
— dim.

# Multiplication is elementwise; s (N,L,1) expands to (N,L,3).

u_guided = u_guided * s

# 5) Map back to SO0(3) from the CURRENT state

guided_R = R_t @ so3vec_to_rotation(u_guided) # (N, L, 3, 3)

# 6) Convert back to axis-angle for downstream use

guided_v = rotation_to_so3vec(guided_R) # (N, L, 3)

return guided_v
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4.4.6 Combining position, orientation and sequence guidance

Thus far guidance was explained on the position, orientation and sequence separately.
However one of the key aspects of our approach is to combine these different types of
guidance.

Individual Guidance Strengths

When guidance is applied the guidance strength w will determine how much the guidance
will influence the model’s predictions. When combining the different types, individual
guidance strengths can be used:

wpos : Quidance strength for position updates
wrot : Quidance strength for orientation updates,
wseq : Quidance strength for sequence updates

It is useful to use individual strengths since each type will operate on it’s own scale.
For example the position guidance might need a higher strength to have a similar effect
as the sequence guidance. When having the same one might hurt the other.

Ablations will be covered on different combinations between position, rotation and
sequence, alongside different weight configurations.

Decay

In the beginning of the diffusion model more coarse grained adjustments will be made and
the model will be more stable to guidance nudges. At the end of the diffusion process
guidance nudges might actually make our solution worse. Therefore a decay factor is
used to reduce the impact of the guidance as the diffusion process progresses.

For the decay factor a linear decay is used.

Linear guidance decay. Let T be the total number of diffusion stepsand ¢t € {1,...,T}
the current step (counting down in the sampler, step 0 is the denoised complex). We set

t—1
Wy = Wwo - T_1° (4.6)

so that wpr = wy at the start and w;, = 0 at the final step.

where
wo € R>g is the initial guidance strength,

TeN, T>1 isthe number of sampling steps,
te{l,...,T} isthe current step (descending in time).

This is only a hypothesis, the effects will be studied in the result section.
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Guidance Schedule

Building on the idea of a simple decay factor, it is possible to take guidance control a
step further by introducing a guidance schedule. Such a schedule allows the guidance
strengths to be adapted dynamically throughout the diffusion process, enabling more
nuanced and flexible control over the influence of each guidance type at different stages.

Instead of decaying, guidance can for example only be applied in the middle of the
diffusion process. Or only used on one of the components for a certain period, then
switch over to the next component. In this way the components would not play a tug of
war between each other.

The possibilities are endless, but one interesting schedule that was explored was
first not doing guidance at all for the first 10 steps. Then increasing the guidance on
the position for 10 steps keeping it steady for 20 and decreasing it again for 10 steps.
Followed by the same scheme but now doing guidance on the sequence and finalizing
by 10 steps of doing nothing. The rotation left out of this schedule due to it still being a
conceptual approach that could lead to instability. This schedule can be seen in figure
The rationale behind this: in the first steps the model is left alone so it can establish
a good baseline, next when more coarse grained adjustments are still allowed guidance
is introduced, first on the positions and then sequence. Position first since the sequence
depends on the backbone structure. Finally at the end the model is again left alone to
make the final adjustments, since there guidance might be more harmful than helpful.

Guidance Schedules

1.01 —— omega_schedule_p
omega_schedule_s

e
o

N
N
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Figure 4.7: Guidance schedule for diffusion process



Chapter 5

Metrics

In this chapter, various metrics will be discussed that can be used to evaluate the per-
formance of the implemented methods. First RMSD is discussed a metric to compare
structures, next AAR a metric to compare sequences. Subsequently a discussion about
the difficulty of verifying if these structures and sequences are truly of good quality. Fi-
nally log likelihood and pseudo log likelihood are covered. These are introduced as a
proxy to evaluate the quality of the generated sequences.

5.1 RMSD: Root Mean Squared Difference

Root Mean Squared Difference (RMSD) measures the difference between two structures.
The smaller this metric the closer both structures are to each other.

In the case of DGAD we compare the generated (X) and ground truth (X) structure.
Specifically the RMSD is calculated between the ground truth CDRH3 loop and the gen-
erated CDRHS loop. Since the rest of the structure is left unchanged.

The Root Mean Squared Difference (RMSD) between two structures is defined as:

S = (x1,...,xy) and S = (%X1,...,%y), Where both structures have N residues and
the i-th residue in S is paired with the i-th residue in S (i.e., the order defines the pairing),
the Root Mean Squared Difference (RMSD) is defined as:

N
RMSD(S,5) = lev > =i — %1% (5.1)
=1

where .
x; € R® is the Ca coordinate of residue i in structure S,
%; € R® is the Ca coordinate of residue i in structure S,

N is the number of paired residues being compared,

2

Ix —y|? = (22 — y2)? + (zy — yy)* + (z, — y-)®. denotes the squared Euclidean norm in R>.

Typically before this is calculated both structures are aligned using a Kabsch algo-
rithm [17]. This ensures that the RMSD is not influenced by rotation or translation of the
structures. The pairing between residues is done by aligning both sequences. However,
the authors of Diffab calculate it a slightly different way. To the best of our knowledge,

48
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they do not align the structures, but instead use a windowed approach and calculate it
using a dynamic programming algorithm.

This windowed approach assumes that there is a shorter and a longer sequence (or
both the same length). A window of the same length as the shorter sequence is matched
to a subsequence of the longer sequence. Meaning that the initial alignment is kept but
residues can be skipped.

You do this for all possible windows. You then compute the RMSD for each window.
Finally you pick the smallest value. For the implementation the RMSD code of Luo et.
al. [22] was used and integrated into the benchmark pipeline of DGAD. In this way it was
ensured that the results were consistent with the original work.

This approach could lead to some ambiguity. However, the model only optimizes the
CDRH3 region and only does small local changes. It does not influence the pose or
position of the complex. Moreover, we keep the length the same as the ground truth.
Thus, this approach is valid for comparing the generated and ground truth structures.

5.2 AAR: Average Amino Acid Recovery

The Average Amino Acid Recovery (AAR) metric measures how much alike two amino
acid sequences are. In the case of DGAD we compare the predicted and ground truth
amino acid sequences.

N
1 .
AAR = N;l[si:si]. (5.2)
where
S is the reference (ground-truth) residue at position i,
8; is the generated residue at position i,
N is the number of positions being compared,

1[P] isthe indicator: 1 if predicate P is true, and 0 otherwise.

AAR can be calculated by taking the sum of all amino acid recoveries and dividing it by
the total number of residues compared. An amino acid recovery occurs when an amino
acid in the predicted sequence matches the amino acid in the generated one. This is
done for each position. This metric can be multiplied with 100 to obtain a percentage. By
dividing by the sequence length we can compare sequences of different lengths. Since
the CDR regions have variable length this is important.

This metric is also reported by Luo et. al. [22].

Unlike RMSD this metric was implemented from scratch for this work alongside se-
quence extraction:

1. Sequence extraction

(a) The model generates raw PDB files, all chains and there sequences are ex-
tracted.

(b) The CDR regions are extracted according to chothia numbering. During ex-
traction some residues may be missing (PDB files are not perfect, often based
on experiments and some do not contain all residues). All of this is booked so
calculation can account for this. Missing residues are not taken into account.
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(c) In the end all sequences, residue positions, chain ids, cdr ids, chains, CDR
chains are stored in a structured json for each experiment.

2. AAR calculation is done, or any other sequence calculation. AAR is implemented
according to the formula provided above.

5.3 Discussion

Although these metrics provide insight into how close we can get to our reference struc-
tures in the test set. It does not provide any guarantee into how plausible they are in
reality. It does not account for the variability that diffusion models produce. Inherently the
generative process of the diffusion model can be ’creative’ an may find another interest-
ing solution to the given complex. Even tough it does not match the reference complex it
might actually be better since it used the whole training corpus internally and found a bet-
ter solution. On the other hand the model might create totally infeasible structures. Both
might be slightly different from the reference structure but one will be an improvement
and the other will not. Determining wether or not a generated antibody antigen is a good
candidate is an open problem. It needs to adhere to a lot of constraints like previously
discussed. It needs to bind, be thermally stable etc.

Currently there is no easy way to know if the antibody is a suitable candidate. A lot of
proxies exist to get insight into this and to get the full picture a combination of methods is
possibly needed. The following list are some of these methods:

 Physical constraints: are they satisfied? Such as bond length, angles and steric
clashes.

» Energy calculation: for example using PyRosetta. [7]

» Docking score

Molecular dynamics simulations

Using another model as a proxy.

— Evaluate the likelihood according to another model (such as ESM [20])

— Folding the generated sequence using a model such as AlphaFold [1] and
compare the structure to the generated one. A type of self-consistency check.

* In vivo or in vitro testing.

— This is the gold standard. But very expensive to do. This also exactly what
these type of generative models aim to make more efficient.

Many of these would either have taken to much implementation time, background
expert knowledge, or computation time. However, one class of evaluation stood out,
and that was using a model such as ESM-2 [20] as predictor of the likelihood of certain
amino acid sequences being viable. Since ESM-2 [20] is trained on a large corpus of
protein sequences, it can provide valuable insights into the potential success of generated
sequences. Training such a large language model would be intractable for us to do.
However, using the model to provide signal into either our generation process or our
benchmark can give valuable insights. The model might also capture other aspects such
as if physical constraints are satisfied internally.



CHAPTER 5. METRICS 51

5.4 Pseudo Log Likelihood (PLL)

The most naive way to use ESM-2 [20] is to calculate the log likelihood (LL) of the gen-
erated sequence. This gives a measure of how likely this sequence is according to the
model. The higher the LL the more likely it is. However, ESM-2 has not been trained
as a classic autoregressive model, but rather as a masked language model. For each
training sample one of the tokens is masked and the model is trained to predict it given
the context. Thus we want to have a measure that reflects this. One such measure is the
PLL, which is outlined in the Masked Language Model Scoring paper by Salazar et al.
[30]

The PLL is calculated by first masking the first residue of our CDRH3 region and
passing it through our model. Then we look up the probability distribution over all possi-
ble amino acids at that position. Then the probability that matches the original masked
residue is picked. This process is repeated for all residues in the CDRH3 region. Finally
the log of all these probabilities is summed to get the PLL.

Figure illustrates this process, this figure was inspired by Salazar et al. [30] but
adopted for DGAD.

5.5 Pseudo-perplexity: PPPL

Although the PLL is a good measure, it is not very good when measuring a corpus of
sequences of different length. This is precisely what will be done. Since the test set is
made up of multiple cdrh3 sequences of different length. A measure that addresses this
issue is the Pseudo-perplexity (PPPL). This is defined in the paper by Salazar et al. [30]
as:

PPPL(W) = exp (-Jb > PLL(w)> . (5.3)

weW
where

PPPL(W) is the pseudo-perplexity of the corpus W (as in the paper),

w is the corpus, i.e. the set of sentences W = {w},
w is a single sentence,
N is the total number of tokens in the corpus W, i.e. N = Z Ny,

weWw

The PPPL is computed over the whole corpus of sequences. Please note that within
this implementation the PPPL per sequence is calculated:

PPPL(s) = exp<—PLj\I;(S)> . (5.4)

where
PPPL(s) is the pseudo-perplexity of the sequence s,

s is a single sequence,
N is the total number of tokens in the sequence



CHAPTER 5. METRICS 52

ESM-2
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Figure 5.1: The PLL process

When reporting the PPPL per experiment the mean of the PPPL per sequence is
taken. It still yields us the normalization benefits but it does not exactly match their
definition.

The PPPL will yield a positive number, where a lower number is better. Indicating
the model’s confidence in the generated sequences while accounting for their varying
lengths.
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5.6 Implementation

For the implementation of these metrics and the processing of the results themselves
the DGAD-B module was created. This module contains all the code needed to run the
benchmarks and process the results. Figure 5.2 outlines the architecture.

DGAD-B

Benchmark
Pipeline

Data Processing Data Processing
Parallel GPU

Does CPU based calculations
in parallel (RMSD + sequence
extraction + AAR)

N/

Does GPU based Metrics
Calculations (LL+PLL)

Data Ingestor Experiment
Extracts all the generated data out of Manager / Jupyter Notebook, Dash... /
the results folder builds a structured . X .
experiment, saves references to Manages loading, saving gxperlments
structures, does general clean up and groups of experiments

N

—

Experiments

Presets.json Register.csv

Experiments
individual
experiment data

saved groups list of all experiments

Figure 5.2: DGAD-B architecture
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1. First the generated samples are collected using the data ingestor. These are stored
in a structured way as an experiment and saved by the experiment manager.

2. Next data processing can be done, here an experiment or group of experiments
can be loaded and either passed to the parallel data processor or data processing
GPU.

» The parallel data processor handles CPU based metrics such as RMSD and
AAR, and extracting the cdr3 sequences, etc. It calls the appropriate functions
from the DGAD-B module to perform these tasks.

» The data processing GPU handles GPU based metrics such as PLL and LL.
It uses batching to efficiently process the data on the GPU.

— The PLL and LL are calculated using the ESM-2 model [20]. The model
is loaded once and then used to process the data in batches. It uses
the esm2_t36_3B_UR50D variant with 3 Billion parameters (to capture as
biological relevance as possible while still being able to be loaded in the
GPU efficiently).

3. Finally, the experiments manager can be used to load groups of experiments, which
can then be visualized or further analyzed.



Chapter 6

Results

The following chapter discusses the results obtained for the implemented methods. It
covers the infrastructure setup, the training results and inference results. The inference
results showcase the effectiveness of the new techniques.

6.1 Infrastructure setup

Diffusion models require large amounts of compute to train, and inference is also resource
intensive. Therefore the GPULab cluster of IDLab was used for running the necessary
experiments. The GPULab cluster contains a number of configurable GPU equipped
servers (Such as NVIDIA A40, NVIDIA RTX 5090, NVIDIA A100...).

It became quickly apparent that a well thought out Al- and DevOps pipeline was
needed to enable efficient development. Therefore development via the remote, sub-
mitting jobs and running experiments were automated using pipelines, procedures, au-
tomation scripts and architectural changes.

This was one of the most unexpectedly challenging parts in the creation of this work.
It took up a large part of implementation time, although it does not contribute to an im-
provement directly it did so indirectly. Thanks to this setup it was possible to run large
amounts of experiments in parallel, iterate, and debug experiments remotely when nec-
essary. Moreover most of the development was done trough a remote connection to the
server.

The following iterative process was used throughout implementation:

1. Develop remotely the new feature
2. Debug the feature remotely on a GPU equipped server

3. Prepare the jobs for this new feature

4. Submit jobs

5. Process results through benchmark pipeline.

The setup consists primarily of three parts that work hand in hand together:

1. An automated system for launching a job, and configuring the host and remote to
enable development and debugging via VSCode Remote Server (this will also be
made available later through Github so other students can benefit when using the
IDLab infrastructure.)

55
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2. Start/config scripts to prepare and run jobs that work hand in hand with the centrally
stored code, data and results (managed through central IDLab Infiniband storage;
each job instance can access this central storage, also configured during step 1).

3. The benchmark pipeline (as discussed in the metrics section).

During the creation of this work over 20 different models were trained, and more than
40 inference runs were performed. Ultimately over 100 000 antibody-antigen complexes
were generated over the course of time. Without automation and GPULab this was im-

possible.

6.2 Experimental Setup

Table [6.1] summarizes the experimental setup.

TRAITS

EXPERIMENTS
DATASET
SPLIT

SAMPLING BALANCE

N_SAMPLES
GPU

BATCH SIZE
LEARNING RATE
TRAINING STEPS

N_STEPS
SEED
OTHERS

Optimization of selected CDR loop (small local changes) for

structure and sequence.

» Mask desired CDR region; keep length fixed; rest of struc-
ture unchanged.

« Diffusion model: noise/denoise positions, orientations, and
sequence.

Focus on CDRS3 results; sampling only for CDRHS3 region.

SAbDab.

Train (0.90): 8558

Val (0.05): 439

Test (0.05): 644

Mode: linear / exponential

Range: [1, 0] (1 = original cluster distribution, 0 = uniform)

Recommended: 0.75 (Word2Vec exponential standard)

8 (number of variants generated per complex in the test set).

NVIDIA A40.

16

1-1074

Base: 200,000

Aux (from scratch): 200,000

Aux (from base): 40,000

100 (number of diffusion steps).

70

Most parameters from the original DiffAb paper were kept

fixed.

Table 6.1: Experimental setup
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6.3 Training results

Before covering the inference results, which showcase the effectiveness of the new tech-
niques, the loss curves and validation curves of the trained models are briefly covered
here. These primarily were verified to see if the customized models such as base and
aux were training properly like the original model.

Figure show the loss curves of the original model.

loss_seq loss_rot loss_pos

= 199999: ©.12854 (0.15421) train_dif... loss_seq = 199999: 0.42059 (0.18093) train_dif... loss_rot — 199999: 0.075252 (0.05999) train_dif... loss_pos

50k 100k 150k 0 50k 100k 150k 0 50k 100k 150k

loss

= 199999: 0.62438 (0.39513) train_dif...5 29 loss
Press CMD+C to copy this data
CMD+click views a run in a new tab

\——

Step

Figure 6.1: Loss curves

There are 4 loss curves:

* loss_pos: The loss of the positions. This has the best convergence.
* loss_seq: The loss of the sequence. Converges ok.

* loss_rot: The loss of the rotations. Here the loss does not drop like the others.
This is also reflected in AAR values. Future improvements to the joint sequence
generation could help here. This was out of scope for this thesis.

* loss: The overall loss of the model. This is a weighted sum of loss_seq, loss_pos
and loss_rot.

The loss curves for a base model that has been trained only on the H_CDRS3 region,
and with the new data split is shown in Figure It shows a similar convergence as the
original model.
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loss_seq loss_rot loss_pos
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CMD+click views a run in a new tab

Sen?

0 50k 100k 150k

Figure 6.2: Loss curves

Many variants with different hyperparameters of the base model, aux model were
trained. Figure 6.3 shows the loss curves for some of these variants.

loss, val_loss

— train_aux_from_base_target_cdrh3_sb_1-0_exp__2025_07_28__03_49_15loss = train_aux_from_scratch_target_cdrh3_sb_1-0_exp__2025_07_28__03_48_26 loss — train_t scratch_target_cdrh3_sb_0-75_exp__2025_07_27__01_15_46 loss
— train_diffab_original_from_scratch__2025_06_17__23_35_29 loss =~ train_aux_from_base_target_cdrh3_sb_1-0_exp__2025_07_28__03_49_15val_loss =~ train_aux_from_scratch_target_cdrh3_sb_1-0_exp__2025_07_28__03_48_26 val_loss

train_base_from_scratch_target_cdrh3_sb_0-75_exp__2025_07_27__01_15_46 val_loss

: Aux trained from base, with fixed dataset (for 80k steps)

All base models show similar loss to orginal and good
convergence. Models are ready for inference :)

Base, sampling balence 1.0 exp, closest to
orginal, but bad val loss compared to other sb val losses

The orginal diffab model trained (orginal split)

Figure 6.3: Loss curves for base model: Show a similar
convergence as the original model.
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Notably we trained models with different sampling balances. Interestingly we can
see that for a sampling balance 1.0 we get a similar loss as our original model. When we
have a more balanced approach the loss is higher. However when we compare the actual
validation loss of the one with sampling balance 1.0 vs a more balanced one like 0.75 the
picture gets flipped, and the more balanced model does better. This already gives some
indication that a more balanced sampling approach is beneficial. In the next section an
ablation will be done to verify this.

Finally, Figure shows the validation loss curves for the different models.

val_loss

Aux trained, each synthetic sample is unique

Aux trained from base, with fixed dataset (for 80k steps)

All bases and aux from scratch show good val_loss

Sampling balance 0, 0.50 and 0.75 exp show promise

Figure 6.4: Loss curves

Aside from the different variants of the base model with regard to sampling balance,
here it is interesting to highlight two versions of the auxiliary model.

Before a fixed dataset, and dataloader were made for the aux model so it could be
trained as described in the original SIMS paper [3] a version was created were each
sample that went into the model was uniquely generated on the fly by the base model.
This was used as a minimal viable product to see if this technique had promise. The loss
for this model is considerably higher than that of the fixed dataset version. Additionally
whereas typically a training run took around 30 hours this took more than 3 days and only
progressed around 40K steps. However, since the aux model primarily provides a shift
even an underperforming model like this showed promise.

Step
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6.3.1 Summary of trained models

Table [6.2 summarizes the most important trained models.

model from dataset target steps sampling sampling note

method balance

original scratch SabDab allcdr 200k _ _ _

base scratch SabDab  allcdr 200k _ _

base scratch SabDab  cdrh3 200k _ _

base scratch SabDab  cdrh3 200k lin 0.0 _

base scratch SabDab  cdrh3 200k exp 0.5

base scratch SabDab  cdrh3 200k exp 0.75

base scratch SabDab  cdrh3 200k exp 1.0 _

aux scratch base- cdrh3 200k _ _ _
unique

aux scratch base- cdrh3 200k _ _
fixed

aux base base- cdrh3 80k _ _
fixed

aux base base- cdrh3 80k _ Ir:
fixed 0.0001 —

0.0007

Table 6.2: Trained model configurations. from indicates

initialization: scratch = trained from random init; base = fine-tuned
from a previously trained base model. Bold entries highlight values

that differ from the previous row. A visible _ means “not applicable
/ not used / not implemented” for that run.
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6.4 Inference results

This section covers the inference results of the different models. It can be split into three
parts.

First it covers basic results to see if our version produces feasible solutions, and if the
proposed techniques have any merit.

In part two the effectiveness of the new techniques will be evaluated. First an ablation
study is done on the sampling balance. Subsequently an ablation on SIMS. Evaluating
when and in what conditions negative guidance works best.

Part three covers a picked example of a generated antibody-antigen complex, and it
summarizes the most important results.

The results are compared using the metrics introduced in the metrics chapter.

6.4.1 Part 1: initial assessment
Paper vs Original model

Before starting any changes to the model it is important that with the Diffab codebase
similar results can be reproduced as they report.

For this inference was run on the original split of Diffab. Two versions were compared.
One with the pre trained published weights of Diffab, this is referred to as paper. The
other version is the same model retrained from scratch with the published configuration,
this is referred to as original. The results are available in table ??. Both distributions are
visualized side by side in figure

model  target \ rmsd (mean) rmsd (std) rmsd (min) rmsd (max)

paper  allcdr 3.310 1.616 0.786 10.478
original allcdr 3.233 1.522 0.781 9.316

Table 6.3: RMSD results base paper vs original

RMSD Distribution for H_CDR3 Samples (95% ClI) RMSD Distribution for H_CDR3 Samples (95% CI)
| |

freque
Frequ

1
1
1
1
1
|
1
|
|
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1
i
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1
1
1
2
1
1
0 o II I II
1 2 3 5 6 1 2 3

4
RMSD (A) RMSD (A)

s

(a) (b)
Paper Distribution for inference on the original Original Distribution for inference on the origi-
test set using pre trained weights. nal test set, with the model trained from scratch

Figure 6.5: Comparing the distributions of the model using the
published weights vs retrained from scratch.
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The values are slightly different this is possibly due to slight differences in sampling,
seed, that they may have used when training their weights. Nonetheless, both results
show similar performance, indicating that the original Diffab model can be successfully
retrained from scratch. They are however higher than the reported RMSD of 2.89 in the
diffab paper [22]. Again possibly due to a different setup they used, or throwing away
certain outliers since their appear to be quite a bit of extreme outliers.

This is not necessarily a problem, since in this work the main goal is to see if the
guidance technique applied on a model can improve that model. As long as the internal
models are compared using similar test set, config and metrics this should be sufficient.

The distributions it self are not very smooth, when these experiments were done this
was one of the motivations for increasing the size of the test set. Since doing comparison
on a small test set is not very reliable.
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Base allcdr vs cdrh3

When training the base model, two versions were trained. One that focuses on all CDR
loops, and one that only focuses on the CDRH3 loop. The main focus of this work is on
the CDRH3 loop. Therefore it is possible to only train on this loop and not on the others.
In the original model during training they randomly choose a cdr region to noise/denoise
since you can select which region to denoise. Intuitively training only the CDRHS3 region
is better. Experiments were done to verify this

When comparing the base allcdr model to the cdrh3 model, we can see that the cdrh3
model has a lower RMSD value (see table[6.4), indicating that it produces structures that
are closer to the ground truth. Since in this work we only focus on the CDRHS3 this model
will be used for further experiments.

model target\rmsd (mean) rmsd (std) rmsd (min) rmsd (max)

base allcdr 5.092 4.045 0.524 29.924
base cdrh3 4.050 2.900 0.596 27.242

Table 6.4: RMSD results base allcdr vs cdrh3

A histogram and KDE of the RMSD values for the base allcdr and cdrh3 models is
shown in figure [6.6] We can see that the cdrh3 model has a higher density of low RMSD
values, indicating that it produces more accurate structures. The shape also matches the
original shape reported in the diffab paper.

. v2_base_cdrh3_testset_no_sb (n=3665)
[l base_allcdr_testset (n=3643)

o
)

Probability Density
©
o

=
.

5 10 15 20 25
RMSD (A)

Figure 6.6: Histogram (40 bins) and KDE for allcdr vs cdrh3
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6.4.2 Part 2: Ablations

Sampling balance

The following ablations cover results for sampling balance:

rmsd aar pll_perplexity
mean + std [min, max] meanz+std [min,max] mean * std [min, max]
E:Zesl:)n;o © 4.01+3.19 [0.61,56.52] 0.29+0.13 [0.00,0.88] 9.25+3.69 [1.67, 38.14]
expsb 0.5 4.09+329 [0.46,58.81] 0.28+0.14 [0.00,0.88] 10.04 + 3.64 [2.49, 30.56]
linsb 0.5 3.65+252 [0.52,21.82] 0.28+0.13 [0.00,0.88] 8.72+3.64 [2.11,49.67]
expsb 0.75 3.70+248 [0.57,17.83] 0.28+0.13 [0.00,0.88] 10.46 +3.71 [2.18, 32.75]
expsb 0.0 3.97+3.16 [0.61,50.56] 0.27 +0.13 [0.00,0.88] 10.16 +4.20 [1.77,42.63]

Table 6.5: Results of ablation study sampling strategies. The

results are obtained on a held out test set of 348 antibody-antigen
complexes from SabDab. The RMSD is calculated on the

generated CDRHS3 region. For each complex 8 samples were

generated, the mean is computed over all samples, the std is the
standard deviation and [min, max] is the range of values over all

samples within the test set. Lower is better for rmsd and

pll_perplexity, higher is better for aar.
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Figure 6.7: The results from the ablation study on sampling

strategies visualized.
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SIMS: position only

The following ablations cover results for SIMS when applied to the position only:

Table 6.6: Results of ablation study on guidance strength w. The
results are obtained on a held out test set of 37 antibody-antigen
complexes from SabDab. The RMSD is calculated on the
generated CDRHS3 region. The best results overall (taking in to
account min/max) are obtained when using a guidance strength of
0.75. For each complex 8 samples were generated, the mean is
computed over all samples, the std is the standard deviation and
[min, max] is the range of values over all samples within the test
set. Lower is better for rmsd.

rmsd
mean £ std  [min, max]
baseline 3.62+3.18 [0.70, 40.12]
from base pos guidance 0.75 3.29 +2.03 [0.62, 12.78]
from base pos guidance 1.0  3.30 £ 2.03 [0.62, 13.43]
from base pos guidance 1.5  3.42 +2.23 [0.55, 16.05]
g%m scrateh pos guidance 4 54, 5 16 [0.67, 12.79]
gc;“; scrateh pos guidance g o5 4 5 17 [0.74, 13.26]
‘;r%m scratch pos guidance 4 5, 559 [0.81, 14.11]
‘;r%m scratch pos guidance 4 244 5 75 1076, 15.72]
from base pos guidance 0.5 3.34 +2.14 [0.66, 12.58]
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Figure 6.8: Violin plot of the results from the ablation study on

guidance strength w when applying SIMS to position only. The

best results overall (taking in to account min/max) are obtained
when using a guidance strength of 0.75.
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SIMS: sequence only
The following ablations cover results for SIMS when applied to the sequence only:
rmsd aar pll_perplexity
mean £ std  [min, max] mean xstd [min,max] meanzxstd [min, max]
baseline 413 £3.71 [0.60,62.51] 0.27 +0.14 [0.00,0.88] 9.28 +3.34 [2.66, 28.49]
from
scratch
. 451 +520 [0.59,88.33] 0.31+0.14 [0.00,0.88] 6.37 +2.30 [1.43,19.34]
guidance
onseq 1.0
from
scratch
. 449 +516 [0.57,88.17] 0.30+0.14 [0.00,0.88] 7.19+2.62 [1.92,26.95]
guidance
onseq 0.5

Table 6.7: Results of ablation study on guidance on sequence.
The results are obtained on a held out test set of 351

antibody-antigen complexes from SabDab. The RMSD is

calculated on the generated CDRHS3 region. The best results
overall (taking in to account min/max) are obtained when using a
guidance strength of 1.0 on sequence only. For each complex 8

samples were generated, the mean is computed over all samples,

rmsd and pll_perplexity, higher is better for aar.

the std is the standard deviation and [min, max] is the range of
values over all samples within the test set. Lower is better for
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Figure 6.9: The results from the ablation study on sequence
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only. What is interesting is that the AAR performance does not
change a lot. However, the PLL perplexity decreases significantly,
indicating more biologically plausible sequences.
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6.4.3 Part 3: Final results

Table highlights the results of applying SIMS to Diffab. The results are obtained
on a held out test set of 246 antibody-antigen complexes from SabDab. The RMSD is
calculated on the generated CDRH3 region.

rmsd aar pll_perplexity
experiment mean+std [min,max] mean+std [min, max] mean % std [min, max]
baseline 413+3.71 [0.60,62.51] 0.27 +0.14 [0.00,0.88] 9.29+3.33 [2.66, 28.49]
balanced
sampling 3.69+248 [0.57,17.83] 0.28+0.13 [0.00,0.88] 10.47 £3.75 [2.18, 32.82]
exp 0.75
8'?55 POS 381+280 [0.57,53.64] 0.28+0.14 [0.00,0.88] 9.04+3.25 [2.86,31.12]
sims  pos
0.75 (with 4.05+3.40 [0.58,59.77] 0.28 £0.14 [0.00,0.88] 9.10+3.27 [2.86,31.12]
decay)
sims  pos
0.75 (witch 4.083 £3.66 [0.58,78.62] 0.28 £0.14 [0.00,0.88] 9.06 +3.25 [2.64, 30.54]
schedule)

Table 6.8: Results of applying SIMS to Diffab on a held out test
set of 350 antibody-antigen complexes from SabDab. The RMSD
is calculated on the generated CDRH3 region. The best results
are obtained when using a guidance strength of 0.75 and without
using decay or a schedule. This results in a ~ 8% improvement
over the baseline. For each complex 8 samples were generated,
the mean is computed over all samples, the std is the standard
deviation and [min, max] is the range of values over all samples

higher is better for aar.

within the test set. Lower is better for rmsd and pll_perplexity,
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Figure 6.10: The final result visualized.

Discussion

Baseline is the base model trained from scratch using the newly discussed split and only
on the CDRHS3 region. Balanced sampling exp 0.75 is the same model but trained with
a more balanced sampling strategy (using the word2vec style sampling). SIMS pos 0.75
is the base model with SIMS applied to position only, with a guidance strength of 0.75.
SIMS pos 0.75 (with decay) is the same but using a decay. The decay is a linear decay
starting from the initial guidance strength towards zero. Finally SIMS pos 0.75 (with
schedule) is the same but using a schedule. The schedule is outlined in figure[6.11]
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Guidance Schedules
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Figure 6.11: Guidance schedule for SIMS. No guidance in the
beginning then gradually increase guidance for position keep on
the longest, then if turned on apply guidance on the sequence , a
bit shorter than the position.

Due to limited training time the balanced strategy could not be combined with guid-
ance (since a new auxiliary model would need to be trained). This could be an interesting
avenue for future work. Possibly it would lead to a cumulative effect further improving
overall RMSD. Additionally for correctness the sequence guidance is left out here since
for the final results runs the results did not match ablations which needs to be investigated
first before publishing here. Consequently combing sequence and position did not show
improvements over using on the position alone and was therefore omitted here.

Most signal in the results can be obtained by looking at the RMSD since here guidance
is only applied on the position which affects the structure. RMSD is better for all our
implemented methods (lower is better).

Some small deviations in AAR are visible too this is because a joint epsilon net is
used with three different heads so the a change in structure also affects the output of
the sequence head of the epsilon net. Additionally we also investigated a change to the
sampling balances which obviously affects the whole model. The AAR for our methods
(compared to baseline) is slightly higher (higher is better). Consequently the PPPL is also
affected. Surprisingly this is higher for the balanced sampling strategy. This indicates that
the sequences are possibly less biologically plausible. As of yet an explanation for this
was not found. For the guidance methods it’s slightly lower (better).

Interestingly the best results are obtained when using a balanced sampling strategy.
This confirms the hypothesis that a more balanced sampling strategy is beneficial for
generating better antibody structures. In second place is applying the SIMS technique
with a guidance strength of 0.75 and without using decay or a schedule. around 8%
improvement.

This confirms our hypothesis that using the SIMS technique is effective for improving
the quality of antibody structures using diffusion models. However, having good machine
learning fundamentals applied to training a model such as sampling in a balanced way
is actually crucial for achieving optimal results as well. Often it is better to look first for
ways to improve the underlying model architecture and training procedure before applying
more advanced techniques such as SIMS.
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Societal Reflection

This thesis studied ways of optimizing the design process for generative antibody design
using Al techniques. It focused specifically on making the diffusion models better. By
improving sample quality without increasing dataset size. Additionally during the method-
ology careful attention was spend at creating a robust evaluation framework. Finally
machine learning fundamentals were used to come up with a better sampling strategy.
This research does not only improve the studied model but can be extended to other
generative models within the space and eventually help improve healthcare.

Climate change and the use of energy are important sustainable development goals
of the United Nations. It is crucial that we consider the environmental impact of our
research. This work uses Al as a means to optimize the design process, we must remain
vigilant about the energy consumption of large-scale Al models and strive to minimize
their carbon footprint.

In the proposed technique an auxiliary model is used during training, thus increasing
the amount of energy needed during sampling of antibodies.

However it is important to balance this with the potential benefits gained from im-
proved antibody generation. One of the other goals is to ensure healthy lives and promote
well-being for all at all ages. By improving these models we aim to directly contribute to
this goal. Moreover, better models reduce experimental validation time which is also a
crucial factor in the effect on energy consumption. As of today typically these models
don’t always produce high quality structures. Therefore many samples need to be gen-
erated and validated experimentally to find a good candidate. By improving the quality of
generated structures we can reduce the amount of samples that need to be generated,
this would make up for the fact that the model uses more energy since it needs to be
used less often to find a good candidate.

Nevertheless, for future work it would be interesting to study ways of incorporating
guidance strategies in the generation process without relying on auxiliary models. This
way we could potentially reduce the energy consumption associated with training while
still benefiting from improved generation capabilities.

As with any powerful technology, there is a risk that it could be used for nefarious
purposes, such as designing harmful biological agents. It is essential that we establish
robust ethical guidelines and oversight mechanisms to prevent misuse and ensure that
our research is conducted responsibly. Moreover even just assuming that these models
produce high quality structures can be potentially misleading, as they may not always
account for the complexities of biological systems.
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Thus it should be noted that although this method is able to improve the quality of
generated antibodies, it does not eliminate the need for extensive validation and testing
in real-world scenarios. These models currently purely serve as a tool to help researchers
explore the vast space of possible antibody designs more efficiently.

In conclusion the benefits of these advancements are significant. By streamlining the
design process and reducing the time and resources required for experimental validation,
we can accelerate the development of new therapeutics and ultimately improve patient
outcomes. It is essential that we continue to explore these possibilities while remaining
mindful of the ethical considerations and societal implications of our work.



Chapter 8

Future work and
Conclusion

8.1 Future work

Several other avenues where explored during the research process as well as extensions
to the current implementation:

+ Before committing to applying SIMS to Diffab an alternative was explored. This
involved using reinforcement learning to finetune Diffab. As a reward function we
would learn a confidence estimator. This confidence estimator predict the quality
of the generated structures. The confidence would be a combination of the metrics
discussed. Figure[8.1]illustrates how this would work.

— The confidence estimator would be trained on labeled structures, for which
different costly metrics were computed. In this way the estimator could learn
to predict the quality of the generated structures.

— The confidence estimator could then be used either standalone to predict the
quality of unseen structures or it could be used as a reward function inside the
reinforcement learning framework.

« Crucially this estimator is differentiable. This would allow us to use algo-
rithms such as PPO (Proximal Policy Optimization) [31] which typically rely
on gradients to flow through the reward function.

— In stead of applying equal guidance on each residue, a mask could be used to
apply more guidance on residues that are further away from the ground truth.
This mask could be learned.

* Classifier free guidance [15] using a learned guidance mask

— Omit using an auxiliary model. Instead train the base model with conditional
information and with a mask that indicates which residues to apply more guid-
ance on.

 Finally the idea of guidance and reinforcement learning could be combined. In-
stead of doing reinforcement learning on the model itself, it could be done on the
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guidance mask. Doing reinforcement learning directly on a model can take a long
time. By doing it on the guidance mask, we could potentially speed up the process
and make it more efficient. In this way different guidance masks can be learned
that steer the model towards different objectives. For example one mask could be
learned to optimize for RMSD, while another could be learned to optimize for phys-
ical plausibility. This would allow for more flexibility and adaptability in the model’s
performance. This opens up a lot new opportunities, and would be interesting to
explore.

Labeled
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Figure 8.1: Training and using the confidence estimator
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8.2 Conclusion

A recently proposed method for enhancing diffusion models through negative guidance
called SIMS, was adapted and applied to the Diffab framework. The primary objective
was to improve the quality of generated antibody structures without increasing the size of
the training dataset.

The auxiliary model was trained using a two step approach to save training time.
Guidance was applied on the position of each residue during inference.

Aside from applying SIMS the base model was investigated further to understand
its behavior and performance characteristics. It was discovered that a better sampling
strategy could be employed to improve the quality of generated structures. This included
exploring different sampling techniques and their impact on the generated output.

When combining SIMS with diffab for positions of residues, a ~ 8% improvement in
RMSD on the CDRHS region on a held out test set of 350 antibody-antigen complexes
from SabDab was achieved. Successfully demonstrating the potential of guidance tech-
niques to improve generative antibody design.

Moreover, when exploring different sampling techniques, it was found that certain
strategies could further enhance the quality of generated structures. Intensely sampling
had a bigger impact on the quality of the generated structures than SIMS. This suggests
that sampling strategies play a crucial role in the performance of diffusion models. This
confirms the importance of good machine learning fundamentals. Before trying any spe-
cial techniques on a model it is important to explore the basics first.

Overall, this work demonstrates the effectiveness of negative guidance in enhancing
diffusion models for antibody design. Ultimately helping to drive the field of drug discovery
forward.
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Codebase

A.1 Codebase Overview & Change Summary

Codebase location: see the accompanying folder or the provided link.

This codebase was derived from the original DiffAB model by Luo et al. [22]. It
is a relatively large code base with a lot of sub layers. To make it easy to see what
changed the next section covers the primary changes and additions. Another quick way
to understand the differences is to compare this codebase against the original DiffAB
codebase using your preferred diff tool. Git was not used for this codebase since a lot of
development was done remotely and this further complicated my workflow.
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Generative Al
Usage Notice

Given the current developments in artificial intelligence, it would have been counterpro-
ductive to avoid the use of generative Al tools during the preparation of this thesis. The
subject matter explored here lies at the intersection of molecular dynamics, biology, and
computer science. To navigate such a broad and technical landscape efficiently, and to
progress to a point where a meaningful contribution could be made, generative Al was
integrated into the workflow. Moreover, as this thesis itself examines the role of Al in ad-
vancing research, it would be somewhat contradictory not to make use of these methods.
Responsible use of Al is allowed by the faculty. [34]

The tools primarily employed were ChatGPT and GitHub Copilot, each serving differ-
ent purposes:

B.1 Literature exploration and methodology

Generative Al was mainly used to break down complex concepts into step-by-step rea-
soning. For example, when encountering a loss function or an unfamiliar mathematical
expression, | would iteratively explore its meaning, applications, and implications with the
aid of Al. In some cases, the model was guided by specific research papers to reduce
the risk of hallucinations. It is important to note that the actual discovery of literature was
carried out through more traditional means such as Google Scholar, YouTube lectures,
discussions with my supervisor, and exploratory reading. Al served as a complementary
tool for interpretation and clarification, rather than for discovery.

B.2 Code development

Al was used selectively in the implementation of the codebase. Small, modular pieces
of code, such as data processing routines or visualization scripts were often generated
with the help of Copilot or ChatGPT. However, entire features or critical architectural com-
ponents were written manually, as relying fully on Al in such contexts proved to be too
error-prone. One exception was a highly mathematical but optional feature, which was ini-
tially generated with Al assistance. Nevertheless, | validated the requirements, checked
the derivations, and verified the implementation myself. Although important this part was
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not necessary the core goal of my thesis. This example illustrates how Al enabled me
to accelerate time-intensive tasks allowing more energy to be dedicated to the other re-
search contributions.

B.3 Writing

The majority of the text was written by hand. However, Al was occasionally used as a
sounding board to test how an explanation might best be structured, or to refine rough
drafts into more fluent and readable text. In some cases, bullet-point outlines were ex-
panded into full paragraphs using Al. Formatting tasks, such as LaTeX adjustments, were
also supported by generative tools. Despite these uses, the structure, arguments, and
flow of the thesis were determined by the implementation process and my own interpre-
tation of the research.

B.4 Reflections on use

Through this process, it became clear that context is crucial when working with Al. A
short prompt will rarely yield a useful result; instead, long, detailed conversations where
requirements are carefully outlined and iteratively refined. This, proved to be the most
productive. In practice, this resembled programming in a higher level abstract language
therefore my programming and reasoning skill previously acquired during this program
were still very relevant and useful. Once this workflow was established, the true strengths
of generative Al became apparent.
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Infrastructure

VSCode for all development — allows local/remote debugging

— Automated workflow for creating jobs
— Includes automatic SSH server setup and config, both local and remote

Compatible with both new nodes (cluster9) and old nodes, CPU and GPU nodes
All envs (diffab, esm, dgad-b, boltz...) preloaded on central storage

Jobs start using shell scripts

Remote development using VSCode Server

— Connect to CPU-only nodes for management, preloading data, fetching data
— Connect to GPU nodes to allow for complex debug situations
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Figure C.1: My typical workflow. Start a job with a specific
template. Configure remote/local using my scripts, and connect!
That’s it, super quick and no time is wasted connecting and
configuring the remote.
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ID Project Username v Nai Status GPU's CPU's Mem Cost Updated Vv
4dd0e66 students-drugd... sjanverm trai... ( RUNNING 1 8 256 ? a few seconds ago
084545 students-drugd... sjanverm trai... ( RUNNING 1 8 256 ? a minute ago
f23f41 students-drugd... sjanverm dga... ( RUNNING 1 8 256 ? 34 minutes ago
27ae6b students-drugd... sjanverm Co... ( RUNNING 0 1 16 ? 11 hours ago
07c857 students-drugd... sjanverm trai... ( RUNNING 1 4 32 ? a day ago

c0d495 students-drugd... sjanverm trai... ( RUNNING 1 4 32 ? a day ago

bl4ada students-drugd... sjanverm trai... ( RUNNING 1 4 32 ? a day ago

b8f3fl students-drugd... sjanverm trai... ( RUNNING 1 4 32 ? a day ago

b834fc students-drugd... sjanverm trai... ( RUNNING 1 a4 32 ? a day ago
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Figure C.2: This shows multiple parallel training runs running.
Easily prepared via my job preparation flow. This flow consists of
having organized output folders, start scripts, prepared
environments etc. . Thanks to the easy management of the
remotes via VScode (see figure [C.1)) everything can be prepared
and pre tested. Once everything is prepared these runs can all be
launched in parallel in a matter of minutes.
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Negative guidance with an auxiliary model improves diffusion models

for generative antibody design

Simon Vermeir

September 2025

Abstract

Selecting new drug candidates such as antibodies is a challenging task. In today’s drug
design tool chain generative diffusion models are employed. However, these models require
large datasets to train on. In antibody design this is a problem as the amount of publicly
available data is limited. To counter this issue, we propose the use of a negative guidance
technique to improve sample quality without increasing dataset size.

Recently a new technique for image diffusion has been proposed that aims to get samples
closer to the original ground truth data distribution called SIMS. An auxiliary model is trained
on synthetic data from a base model trained on the original dataset. At inference time guidance
is done between both. The reasoning behind this is that the bias between base and auxiliary
has traits of the bias between base and the ground truth. This is used to shift base closer to
the ground truth. They show state of the art FID scores on imagenet. Our hypothesis is that
by employing this technique on antibody-antigen diffusion similar improvements can be seen.

The proposed integration of SIMS has been applied to Diffab, an accessible and trainable
antibody-antigen diffusion model. When a CDR-region is masked out on an antigen-antibody
complex, Diffab is able to generate a new CDR-region that fits the rest of the antibody and
the antigen. To verify the technique a base model was trained from SabDab using the Diffab
framework. Next an auxiliary model initialized with weights from base was trained with syn-
thetic data from base. To achieve reasonable training times a two step training approach was
employed. Finally at inference time guidance is done on the predicted noise ¢ by using both

models: €guided = (1 + W)€pase — Weauz Where w controls the guidance strength.
On a held out test set of 350 antibody-antigen complexes, the use of SIMS on the (z,y,z)
positions has been shown to improve the RMSD of the generated CDRH3 regions by ~ 8%

compared to the base model.

1 Introduction

Antibodies are natural occurring proteins that will
identify foreign actors within the body, such as viruses.
In immunology, the target that antibodies recognize is
called an antigen. An antigen can be the whole foreign
element, or just a part of it, such as the spike protein
in COVID-19. The antibody will bind to the antigen,
forming an antibody-antigen complex.

A new promising technique in the drug design
pipeline is in silico generative antibody design.
Whereby, we use generative (AI) techniques to create
suitable antibodies for a particular target.

Diffusion models are a class of generative models
that have gained popularity for their ability to gen-
erate high-quality samples from complex distributions.
They work by modeling the process of diffusion, where
data points are gradually transformed into noise and
then reconstructed back into data.

The most well know form of diffusion is image dif-
fusion. Here during training the model will learn to
denoise an image that has been corrupted with gaus-

sian noise.

Recently it has been discovered that just like for cre-
ating new images from noise, diffusion models can be
employed to create novel antibodies. Just like in the
case of image diffusion they will during their training
learn to reconstruct a corrupted random representation
of an antibody. Then during inference novel antibodies
can be generated from this noisy state.

1.1 Background

Antibody structure An antibody has a heavy and
light polypeptide chain. Each chain has three comple-
mentary determining regions. Called CDR1, CDR2,
CDR3. When referring to region 3 of the heavy chain
we refer to CDRH3. The regions are highly variable
loops and determine the binding specificity of the an-
tibody. The rest of the antibody is more conserved.
The CDRHS3 region is the most variable. When talk-
ing about the backbone it refers to the N, C and CA
atoms of each residue. The side chains are the rest of
the atoms in the amino acid, and determine the amino



acid type and it’s properties. [1]

Diffusion models Diffusion models [[2], [3], [4]] are
characterized by a forward and backward process. The
forward process will gradually add noise until the data
is a multi variate Gaussian distribution. The backward
process will learn to approximate the ground truth de-
noiser that will reconstruct the data from noise. Cru-
cially in this work is the denoising step of the backward
process. This is done by predicting the noise € that was
added to the data. The learned denoiser looks like:

pg(.’)i‘tfl | .’L't) :N(xtfﬂ ,U/G(mht)v Ee(xtat)) (1)

where g (z¢,t) is the variance predicted by the model
at step t. For the covariance a time dependent profile
is used so that this does not need to be learned.

to(z+,t) can be learned directly or we can learn the
amount of noise that was added to x;. This is done
trough €g (x4, t)

Given the noisier sample x; and the predicted noise
€g(x, t) the next step can be computed:

N
Va VT

with oy = 1 — 8; A higher a; means more signal is
preserved (less noise added). This is because it has an
inverse relationship to 8 which is the variance of the
noise added at that time step. When the variance is
low you retain more of the previous step in the for-
ward process (when set to zero for example you copy
over the step), when it is high you add more noise. z
is a point sampled from the prior distribution (typi-
cally a gaussian) o controls the amount of noise to add
to the backward process, this is needed because each
diffusion step is a stochastic process. In each forward
diffusion step you sample from a conditional gaussian
distribution, not only at 7! If o, would be zero then
each step would be deterministic and we would lose
sample diversity.

In this work the epsilon formulation will be used.
The function to predict the added noise will be called
EpsilonNet throughout this work. It will play a cru-
cial role in applying the SIMS technique.

Xt—1 =

@&m0+mz (2)

2 Foundations

2.1 Diffab

Diffab is a diffusion model that can generate new
CDR-regions on an antibody-antigen complex. The
model is trained on the SabDab dataset. During train-
ing one of the CDR-regions is masked out and the
model has to reconstruct it. Diffab is from the paper
” Antigen-Specific Antibody Design and Optimization
with Diffusion-Based Generative Models” by Luo et.
al [5].

Classically when diffusion is done for antibody de-
sign, the diffusion happens on the backbone represen-
tation of the antibody. After the backbone is generated
an inverse folding model (such as proteinMPNN [6]) is
used to get the full amino acid sequence. Finally the
side chains are added using a tool such as PyRosetta
[7].

Diffab is different in that it does joint optimization of
the structure and the sequence. The model will predict
for each residue the (x,y, z) position, rotation and the
amino acid type. The model is equivariant to rotations
and translations of the input structure.

The following representation is used during diffusion:

e Position:
pER3
Prior after T steps: N(0, 07.13).

e Rotation:
R € S0O(3)
Prior after T steps: Unif(SO(3)).

e Sequence:
S; ‘ T ~ Cat(E, 7T7;), S; € by
Prior after T steps: Cat(Z; +1).

This structure is represented in figure 1
Diffusion happens in the following way:

1. For step t: The position, rotation, sequence, con-
text and time step are passed to the EpsilonNet.
The "noise” is predicted for each of the three parts.

2. Each component is denoised using it’s own de-
noiser. Adapted to the data representation. step
t — 1 is obtained.

3. This repeats for T steps until a clean sample is
obtained.

The epsilon of diffab has three different heads (the
last part of the neural network):

e Position head: This head is responsible for pre-
dicting the noise added to each position. It thus
predicts € like standard diffusion.

e Orientation head: This head predicts the next
orientation that has to be applied.

e Amino acid head: This head predicts a categor-
ical distribution over the amino acid types for each
residue. The distribution represents the prior be-
lief of the original distribution. It is a categorical
distribution.

Figure 3 available in the appendix illustrates the de-
noising process for one diffusion step.
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Figure 1: Antibody-Antigen representation for diffusion in Diffab.

2.2 SIMS

In the paper ”Self-improving diffusion models with syn-
thetic data” by Alemohammad et al. [8] the au-
thors propose a new training paradigm for diffusion
models that leverages self-synthesized data to improve
the model’s performance. The key idea is to use the
model’s own generated samples as a form of negative
guidance during training, steering the model away from
non-ideal synthetic data and towards the real data dis-
tribution.

The method involves training two models: a base
model and an auxiliary model. The base model is
trained on the original dataset, while the auxiliary
model is trained on synthetic data generated by the
base model. During inference, the predictions from
both models are combined to guide the sampling pro-
cess. The combined prediction is given by:

3)

€guided = (1 + w)ebase — Weauzx

The idea is that the bias between the base and aux-
iliary model has traits of the bias between the base
and the ground truth. By subtracting the auxiliary
model’s prediction, the base model is nudged closer to
the real data distribution. The parameter w controls
the strength of this guidance. Figure 4 and 5 illustrates
the SIMS idea, they can be found in the appendix.

3 Methodology

3.1 Training the auxiliary model

A naive way to train an auxiliary model is to gener-
ate with the base model a new sample and pass it to
the auxiliary model to train. You could either gener-
ate a new sample each time or form a dataset at the
same time and reuse. The first approach makes train-
ing slow. The second although faster isn’t ideal either
since two models need to be loaded and there is still
overhead.

Therefore, to train the auxiliary model a two step
approach was used:

1. First the base model is used to generate synthetic
samples. These are saved in a data base. In
stead of saving the processed PDB files, the di-
rect tensor representation used by the model is
saved. This eliminates the need to reprocess the
data each time. It also avoids processing artifacts.
This saves processing time when training the aux-
iliary model and also makes sure that data is not
organized differently by processing artifacts. The
data is saved in LMDB [9]. LMDB is a key-value
database that uses memory mapping to store data
on disk. This makes it very fast to read data dur-
ing training.

e Note internally the model operates on back-
bone representation (position, rotation and



sequence). When a sampling step is done
during training diffab expects the full struc-
ture (including sidechains, masks, etc) as in-
put. However after sampling the model only
returns the backbone, afterwich it is refor-
matted to the full structure. Therefore an
adapted sampling procedure was created that
outputs the correct tensor representation for
input into the model. This way the output of
one model (the baseline) can be used directly
as input for the auxiliary model.

2. Next the auxiliary model is trained on the syn-
thetic data. A special dataloader is used that will
read the data from the LMDB database and re-
construct the tensor representation used by the
model.

This approach is outlined in figure 6, which is avail-
able in the appendix.

3.2 Guidance on position

To evaluate the effectiveness of SIMS, the technique
was applied on the position of each residue. This was
chosen since the diffusion process on the position is sim-
ilar too the diffusion process on images. The position
is represented as a (x,y, z) coordinate in 3D space. Ap-
plying guidance on the predicted noise for the position
is a euclidian operation.

Within the diffab implementation the EpsilonNet
predicts both position, rotation and amino acid type.
During inference two epsilon nets are used, one for the
base model and one for the auxiliary model. The guid-
ance is only applied on the position part of the pre-
diction. One drawback is that two models need to be
loaded into memory. Before the position is denoised
guidance is done on the predicted noise as shown in
figure 2.

4 Extensions

Aside from simply applying guidance on the position,
other types of guidance can be applied. The following
extensions were considered:

Guidance on sequence The sequence is repre-
sented as a categorical distribution over the 20 amino
acids. The EpsilonNet predicts for each residue a cat-
egorical distribution over the amino acids. This rep-
resents the prior belief of the original distribution. To
apply guidance on this distribution we can use the fol-
lowing approach:

The last layer of the sequence head is a softmax layer.
This means that the output is a probability distribu-
tion over the amino acids. To apply guidance this layer
is removed next the logits are obtained. These logits
are mixed using the SIMS formula. Next a softmax

is applied again to obtain a valid probability distribu-
tion. Finally the denoising step is applied using this
new distribution.

Guidance on rotation Applying guidance on ro-
tation is not as straightforward as on position. The
rotation is represented as a rotation matrix in SO(3).
This means that the rotation is not a euclidian space.
Therefore the guidance can not be applied directly on
the prediction from the epsilon which predicts the next
rotation that has to be applied. This way of applying
has not been solved yet, however a possible solution
could be:

e Conceptually we want to interpolate between two
rotations. This can be done using lie algebra in
tangent space. In this space we can apply guidance
as a euclidean operation. Important to note is that
the current rotation is applied on the sequence of
rotations before it, therefore the predicted rota-
tions need to be anchored at the current rotation.

Combined guidance Multiple types of guidance
can be combined to improve the overall performance.
In the hope that combining guidance on position, rota-
tion and sequence will yield better results than just one
type of guidance. To have reliable combined guidance
it is important that each type of guidance has its own
tuned guidance strength w. This is because the dif-
ferent types of data have different characteristics and
scales. For example the position is a continuous vari-
able in 3D space, while the sequence is a categorical
variable. Therefore the impact of guidance on each
type of data will be different.

Guidance schedule A guidance schedule can be
used. This means that the guidance strength w can
be changed during the diffusion process for each type
of guidance. For example: at the start no guidance
can be applied to let the model 'warm up’. Next po-
sitional guidance can be increased in a linear way and
kept steady for a few steps. Next rotational guidance
can be turned on, and finally sequence guidance can
be applied. The rationale is that the in this way the
different types wont interfere. At the end you can also
turn off guidance to let the model 'polish’ the sample.

5 Metrics

Three metrics are used to evaluate the performance
of the model: Root Mean Square Deviation (RMSD),
which captures the difference between the generated
and ground truth structure. Amino Acid Recovery
(AAR), which measures the percentage of correctly
predicted amino acids in the CDRH3 region. Finally,
Perplexity Pseudo Log Likelihood (PPPL) is used to
evaluate the biological plausibility of the generated se-
quences.
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6 Results

Table 1 highlights the results of applying SIMS to Dif-
fab. The results are obtained on a held out test set
of 246 antibody-antigen complexes from SabDab. The
RMSD is calculated on the generated CDRH3 region.
For completeness an ablation study on the guidance
strength w is shown in table 2, provided in the ap-
pendix. Additionally study on sequence is shown in
table 3. They are provided as supplementary material
in the appendix, for more details see accompanying
thesis.

Baseline is the base model trained from scratch us-
ing the newly discussed split and only on the CDRH3
region. Balanced sampling exp 0.75 is the same
model but trained with a more balanced sampling
strategy (using the word2vec style sampling). SIMS
pos 0.75 is the base model with SIMS applied to posi-
tion only, with a guidance strength of 0.75. SIMS pos
0.75 (with decay) is the same but using a decay. The
decay is a linear decay starting from the initial guid-
ance strength towards zero. The schedule is: no guid-
ance for 10 steps then gradually increase guidance for
position over 5 steps keep on for 40 steps. Then keep
off.

The best results are obtained when using a guidance
strength of 0.75 and without using decay or a schedule.
The 0.75 is obtained via an ablation study which can
be found in the accompanying thesis along with more
results on guidance on sequence and using different se-
tups. This results in a ~ 8% improvement over the
baseline.

Most signal in the results can be obtained by looking
at the RMSD since here guidance is only applied on the
position which affects the structure. RMSD is better
for all our implemented methods (lower is better).

Some small deviations in AAR are visible too this
is because a joint epsilon net is used with three dif-
ferent heads so the a change in structure also affects

the output of the sequence head of the epsilon net.
The AAR for our methods (compared to baseline) is
slightly higher (higher is better). Consequently the
PPPL is also affected. For the guidance methods it’s
slightly lower (better).

7 Conclusion and future work

7.1 Future work

e Guidance mask in stead of equal guidance

— In stead of applying equal guidance on each
residue, a mask could be used to apply more
guidance on residues that are further away
from the ground truth. This mask could be
learned.

e Classifier free guidance [10] using a learned guid-
ance mask

— Ommit using an auxiliary model. Instead
train the base model with conditional infor-
mation and with a mask that indicates which
residues to apply more guidance on.

— This can also be extended to learning the
guidance mask trough reinforcement learning
processes.

7.2 Conclusion

In this work the SIMS technique was applied to Dif-
fab. The auxiliary model was trained using a two
step approach to save training time. Guidance was ap-
plied on the position of each residue during inference.
This resulted in a ~ 8% improvement in RMSD on the
CDRHS3 region on a held out test set of 350 antibody-
antigen complexes from SabDab. Successfully demon-
strating the potential of guidance techniques to im-
prove generative antibody design.



Table 1: Results of applying SIMS to Diffab on a held out test set of 350 antibody-antigen complexes from
SabDab. The RMSD is calculated on the generated CDRH3 region. The best results are obtained when using
a guidance strength of 0.75 and without using decay or a schedule. This results in a ~ 8% improvement over
the baseline. For each complex 8 samples were generated, the mean is computed over all samples, the std is the
standard deviation and [min, max] is the range of values over all samples within the test set. Lower is better
for rmsd and pll_perplexity, higher is better for aar.

rmsd aar pll_perplexity
experiment_id mean + std  [min, max] mean + std [min, max] mean + std [min, max]
baseline 413 £ 371 [0.60, 62.51] 0.27 £0.14 [0.00,0.88] 9.20 + 3.33  [2.66, 28.49]

balanced sampling 5 g | 5 43 057, 17.83] 028 +0.13  [0.00, 0.88] 1047 + 3.75 [2.18, 32.82)

exp 0.75

sims pos 0.75 (with

docay) 3.81 + 280 [0.57, 53.64] 0.28 +0.14 [0.00,0.88] 9.04 + 3.25 [2.86, 31.12]
sims pos 0.75 (With o5 4 5 40 0,58, 59.77] 028 + 014 [0.00,0.88] 910 + 3.27  [2.86, 31.12]
schedule)

sims pos 0.75 403 +3.66 [0.58, 78.62] 0.28 +0.14 [0.00,0.88] 9.06 + 3.25  [2.64, 30.54]
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D Ablation studies

Table 2: Results of ablation study on guidance strength w. The results are obtained on a held out test set of 37
antibody-antigen complexes from SabDab. The RMSD is calculated on the generated CDRH3 region. The best
results overall (taking in to account min/max) are obtained when using a guidance strength of 0.75. For each
complex 8 samples were generated, the mean is computed over all samples, the std is the standard deviation
and [min, max] is the range of values over all samples within the test set. Lower is better for rmsd.

rmsd

mean + std  [min, max]
baseline 3.62 + 3.18 [0.70, 40.12]
from base pos guidance 0.75 3.29 + 2.03 [0.62, 12.78]
from base pos guidance 1.0 3.30 £ 2.03 [0.62, 13.43]
from base pos guidance 1.5 3.42 £ 2.23 [0.55, 16.05]
from scratch pos guidance 0.5 3.34 £2.16 [0.67, 12.79]
from scratch pos guidance 0.75 ~ 3.35 £ 2.17  [0.74, 13.26]
from scratch pos guidance 1.0 3.45+229 [0.81, 14.11]
from scratch pos guidance 1.5 3.73 £ 2.73 [0.76, 15.72]
from base pos guidance 0.5 3.34 +2.14 [0.66, 12.58]

Table 3: Results of ablation study on guidance on sequence. The results are obtained on a held out test set
of 351 antibody-antigen complexes from SabDab. The RMSD is calculated on the generated CDRH3 region.
The best results overall (taking in to account min/max) are obtained when using a guidance strength of 1.0
on sequence only. For each complex 8 samples were generated, the mean is computed over all samples, the std
is the standard deviation and [min, max] is the range of values over all samples within the test set. Lower is
better for rmsd and pll_perplexity, higher is better for aar.

rmsd aar pll_perplexity

mean + std  [min, max] mean + std [min, max] mean £ std [min, max]
baseline 413 £3.71 [0.60, 62.51] 0.27 +£0.14 [0.00, 0.88] 9.28 + 3.34  [2.66, 28.49)]
from scratch- guid-— 1 4 590 (0,50, 88.33] 031+ 0.14  [0.00, 0.88] 6.37 + 2.30 [1.43, 19.34]
ance on seq 1.0
from seratch guid-— 49 | 516 (057, 8817 030 £ 0.4 [0.00,0.88] 7.19 + 262 [1.92, 26.95]

ance on seq 0.5
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